首页> 中文期刊> 《应用数学与计算数学学报》 >A Modified Weak Galerkin Finite Element Method for the Biharmonic Equation on Polytopal Meshes

A Modified Weak Galerkin Finite Element Method for the Biharmonic Equation on Polytopal Meshes

     

摘要

A modified weak Galerkin (MWG) finite element method is developed for solving the biharmonic equation.This method uses the same finite element space as that of the discontinuous Galerkin method,the space of discontinuous polynomials on polytopal meshes.But its formulation is simple,symmetric,positive definite,and parameter independent,without any of six inter-element face-integral terms in the formulation of the discontinuous Galerkin method.Optimal order error estimates in a discrete H2 norm are established for the corresponding finite element solutions.Error estimates in the L2 norm are also derived with a sub-optimal order of convergence for the lowest-order element and an optimal order of convergence for all high-order of elements.The numerical results are presented to confirm the theory of convergence.

著录项

  • 来源
    《应用数学与计算数学学报》 |2021年第1期|91-105|共15页
  • 作者

  • 作者单位

    北京工业大学;

    特拉华大学;

    阿肯色大学;

  • 原文格式 PDF
  • 正文语种 chi
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号