Fractional calculus and fractional-order modeling provide effective tools for modeling and simulation of anomalous diffusion with power-law scalings.In complex multi-fractal anomalous transport phenomena,distributed-order partial differential equations appear as tractable mathematical models,where the underlying derivative orders are distributed over a range of values,hence taking into account a wide range of multi-physics from ultraslow-to-standard-to-superdiffusion/wave dynamics.We develop a unified,fast,and stable Petrov-Galerkin spectral method for such models by employing Jacobi poly-fractonomials and Legendre polynomials as temporal and spatial basis/test functions,respectively.By defining the proper underlying distributed Sobolev spaces and their equivalent norms,we rigorously prove the well-posedness of the weak formulation,and thereby,we carry out the corresponding stability and error analysis.We finally provide several numerical simulations to study the performance and convergence of proposed scheme.
展开▼