首页> 中文期刊> 《应用数学与计算数学学报》 >Efficient Difference Schemes for the Caputo-Tempered Fractional Diffusion Equations Based on Polynomial Interpolation

Efficient Difference Schemes for the Caputo-Tempered Fractional Diffusion Equations Based on Polynomial Interpolation

     

摘要

The tempered fractional calculus has been successfully applied for depicting the time evolution of a system describing non-Markovian diffusion particles.The related governing equations are a series of partial differential equations with tempered fractional derivatives.Using the polynomial interpolation technique,in this paper,we present three efficient numerical formulas,namely the tempered L1 formula,the tempered L1-2 formula,and the tempered L2-1σ formula,to approximate the Caputo-tempered fractional derivative of order α ∈ (0,1).The truncation error of the tempered L1 formula is of order 2-α,and the tempered L1-2 formula and L2-1σ formula are of order 3-α.As an application,we construct implicit schemes and implicit ADI schemes for one-dimensional and two-dimensional time-tempered fractional diffusion equations,respectively.Furthermore,the unconditional stability and convergence of two developed difference schemes with tempered L1 and L2-1σ formulas are proved by the Fourier analysis method.Finally,we provide several numerical examples to demonstrate the correctness and effectiveness of the theoretical analysis.

著录项

  • 来源
    《应用数学与计算数学学报》 |2021年第1期|1-40|共40页
  • 作者

  • 作者单位

    西安工业大学;

  • 原文格式 PDF
  • 正文语种 chi
  • 中图分类
  • 关键词

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号