首页> 中文期刊> 《应用数学与计算数学学报》 >High-Order Local Discontinuous Galerkin Algorithm with Time Second-Order Schemes for the Two-Dimensional Nonlinear Fractional Diffusion Equation

High-Order Local Discontinuous Galerkin Algorithm with Time Second-Order Schemes for the Two-Dimensional Nonlinear Fractional Diffusion Equation

     

摘要

In this article,some high-order local discontinuous Galerkin(LDG)schemes based on some second-order θ approximation formulas in time are presented to solve a two-dimen-sional nonlinear fractional diffusion equation.The unconditional stability of the LDG scheme is proved,and an a priori error estimate with O(hk+1+At2)is derived,where k ≥ 0 denotes the index of the basis function.Extensive numerical results with Qk(k = 0,1,2,3)elements are provided to confirm our theoretical results,which also show that the second-order convergence rate in time is not impacted by the changed parameter θ.

著录项

  • 来源
    《应用数学与计算数学学报》 |2020年第4期|613-640|共28页
  • 作者

  • 作者单位

    内蒙古大学;

  • 原文格式 PDF
  • 正文语种 chi
  • 中图分类
  • 关键词

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号