首页> 中文期刊> 《应用数学与计算数学学报(英文)》 >离散三项分布风险模型中的贴现罚函数及其渐近解

离散三项分布风险模型中的贴现罚函数及其渐近解

     

摘要

Gerber和Shiu在1998年首次定义贴现罚函数为:m(u)=E{v^Tw(U_T-,|U_T|) I(T<∞)|U_0=u},其中w为一有界函数.通过对w和v的不同选择,可以得到一些与破产有关的变量的性质.本文用该方法对离散三项分布风险模型中的贴现罚函数问题进行了研究.主要得到了该模型中f(x,y;u)(即初始盈余为u,破产前瞬间盈余为x,破产时赤字为y这一事件的贴现概率)的明确表达式和该表达式的渐近解.还得到了导致破产发生的最后一个索赔额的分布.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号