首页> 外文期刊>中国航空学报(英文版) >新型空间站氢/氧变轨发动机研究
【24h】

新型空间站氢/氧变轨发动机研究

机译:新型空间站氢/氧变轨发动机研究

获取原文
获取原文并翻译 | 示例
       

摘要

基于气动谐振点火技术的氢/氧变轨发动机是一项新型的液体火箭推进技术,尤其适用于空间站应用.通过氢氧推力室理论热力计算以及同轴氢氧谐振点火试验研究,采用了同轴氢氧谐振点火器加氧气补燃喷嘴的发动机头部结构方案.在同轴氢氧谐振点火器进行性能试验研究基础上,依次成功进行了发动机头部的谐振点火及氧气补燃试验.最后,成功完成了包括单脉冲、连续双脉冲及3.0 s持续工作几种形式下的发动机地面试车试验,验证了发动机工作的可靠性及可行性.发送机起动时间达到0.2 s以内.%Hydrogen and oxygen orbital maneuver thruster, based on gas-dynamic resonance ignition, is a new liquid rocket propulsion technology, and is especially applicable to space station. By means of theoretic thermodynamic calculation of the hydrogen and oxygen thruster, combined with the experimental exploration on the coaxial hydrogen and oxygen resonance ignition, a scheme of the thruster head configuration is designed as the combination of a coaxial hydrogen/oxygen resonance igniter and an oxygen augmentation injector. Through ignition tests on coaxial hydrogen/oxygen resonance igniter characterization, the thruster head ignition tests have been conducted successfully in sequence of resonance ignition and oxygen augmentation combustion. Finally, the thruster ground tests are successfully carried out in forms of single impulse, successive double impulses and 3.0 seconds continuous running, which verify the reliability and feasibility of the thruster. The response time of the thruster starting is restricted within 0.2 second.
机译:基于气动谐振点火技术的氢/氧变轨发动机是一项新型的液体火箭推进技术,尤其适用于空间站应用.通过氢氧推力室理论热力计算以及同轴氢氧谐振点火试验研究,采用了同轴氢氧谐振点火器加氧气补燃喷嘴的发动机头部结构方案.在同轴氢氧谐振点火器进行性能试验研究基础上,依次成功进行了发动机头部的谐振点火及氧气补燃试验.最后,成功完成了包括单脉冲、连续双脉冲及3.0 s持续工作几种形式下的发动机地面试车试验,验证了发动机工作的可靠性及可行性.发送机起动时间达到0.2 s以内.%Hydrogen and oxygen orbital maneuver thruster, based on gas-dynamic resonance ignition, is a new liquid rocket propulsion technology, and is especially applicable to space station. By means of theoretic thermodynamic calculation of the hydrogen and oxygen thruster, combined with the experimental exploration on the coaxial hydrogen and oxygen resonance ignition, a scheme of the thruster head configuration is designed as the combination of a coaxial hydrogen/oxygen resonance igniter and an oxygen augmentation injector. Through ignition tests on coaxial hydrogen/oxygen resonance igniter characterization, the thruster head ignition tests have been conducted successfully in sequence of resonance ignition and oxygen augmentation combustion. Finally, the thruster ground tests are successfully carried out in forms of single impulse, successive double impulses and 3.0 seconds continuous running, which verify the reliability and feasibility of the thruster. The response time of the thruster starting is restricted within 0.2 second.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号