首页> 中文期刊> 《物理学前沿:英文版》 >Linear dipole behavior of single quantum dots encased in metal oxide semiconductor nanoparticles films

Linear dipole behavior of single quantum dots encased in metal oxide semiconductor nanoparticles films

         

摘要

Understanding of charge/energy exchange processes and interfacial interactions that occur between quantum dots (QDs) and the metal oxides is of critical importance to these QD-based optoelectronic devices. This work reports on linear dipole behavior of single near-infrared emitting CdSeTe/ZnS core/shell QDs which are encased in indium tin oxide (ITO) semiconductor lianoparticles films. A strong polarization anisotropy in photohiminescence emission is observed by defocused wide-field imaging and polarization measuremen11echniques, and the average polarization degree is up to 0.45. A possible mechanism for the observation is presented in which the electrons, locating at single QD surface from ITO by electron transfer due to the equilibration of the Fermi levels, result in a significant Stark distortion of the QD electron/hole wavefunctions. The Stark distortion results in the linear polarization property of the single QDs. The investigation of linear dipole behavior for single QDs encased in ITO films would be helpful for further improving QD-based device performance.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号