The velocity distribution of laminar flow is alike of rotating parabolic when homogenous fluid flows in cycle pipes,however the one of turbulent flow conforms to one in seven exponential distribution law.The physical characteristics of ultrafine full-tailings cemented filling slurry are complex,its flow characteristics in pipe are affected by boundary conditions significantly,such as pipe diameter.Using eulerian model of fluent-3d software,the flow characteristics on pipe cross section of ultrafine full-tailings slurries of different concentration was studied when they were transported with large diameter pipes under the condition that stowing gradient was 3 .The study pointed it out that ultrafine full-tailings cemented slurry of 1 ∶6 cement-sand ratio is easy to form homogenous fluid,whose velocity distribution is approximate symmetry along the pipe axis;that the slurry of 64% concentration becomes Newton body when it flows inΦ200mm pipe,however,the slurry of 68% concentration flows as pseudo plastic body and the slurry of 72%flows as yield pseudo plasticity body;and that as to the width of high velocity zone in which the velocity is higher than 2.9m/s,the one of slurry of 64% is largest while the one of slurry of 72% concentration takes second place and the one of the slurry with 68% concentration is smallest.%均质流在圆管中层流运动时,流速呈旋转抛物面分布;紊流运动时,流速特征符合七分之一指数分布定律。超细全尾砂胶结充填料浆物理性质复杂,在管道内的流动特征受管径等边界条件影响较大。使用 Fluent-3D中欧拉模型,模拟研究充填倍线为3的条件下,不同浓度超细全尾砂料浆在大直径管道中满管自流输送时管道横断面上的流动特征。研究结果发现,灰砂比为1∶6的超细全尾砂胶结充填料浆在管道中易形成均质流,在管道横断面上流速沿轴线近似对称分布;料浆浓度为64%时,200mm管道输送的超细全尾砂胶结充填料浆为牛顿体;料浆浓度为68%时,呈现伪塑性体的流动模式;料浆浓度为72%时,呈现屈服伪塑性体的流动模式。就大于2.9m/s的高流速区域宽度而言,64%浓度料浆最大,72%浓度料浆次之,68%浓度料浆最小。
展开▼