首页> 中文期刊> 《计算机应用研究》 >判别性双向协同表示的图像识别算法

判别性双向协同表示的图像识别算法

     

摘要

基于协同表示的分类(CRC)以其卓越的协同能力成为人脸分类领域的一个突破.然而在实际应用中,通常只提供很少甚至是单个人脸图像来进行人脸识别,这导致了CRC无法很好地处理光照、表情、姿态和遮挡等问题.针对该问题,提出一种判别性双向协同表示的图像识别算法(DB-CRC).首先通过引入判别式字典学习(FDDL)模型学习得到一个结构化字典,使得每个特定类的子字典对相关类的样本具有良好的表示能力,由此,较大的类间离散度和较小的类内离散度使得重构误差和编码系数都具有判别性;然后将学习得到的稀疏编码系数作为测试样本数据进行双向表达,建立快速逆向表示模型,利用双向表示策略估计每个测试样本与结构化字典之间的双向重构残差信息;最后利用竞争融合方法对来自双向表示模型的重构残差进行加权排名,实现最终的人脸分类.在AR、PIE、LFW等通用人脸数据库上的实验结果验证了该算法的有效性,特别是对小样本问题的鲁棒性.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号