首页> 中文期刊> 《计算机应用研究》 >基于广义回归网络的动态权重回归型神经网络集成方法研究

基于广义回归网络的动态权重回归型神经网络集成方法研究

     

摘要

神经网络集成技术能有效地提高神经网络的预测精度和泛化能力,已成为机器学习和神经计算领域的一个研究热点.针对回归分析问题提出了一种动态确定结果合成权重的神经网络集成构造方法,在训练出个体神经网络之后,根据各个体网络在输入空间上对训练样本的预测误差,应用广义回归网络来动态地确定各个体网络在特定输入空间上的权重.实验结果表明,与传统的简单平均和加权平均方法相比,本集成方法能取得更好的预测精度.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号