首页> 中文期刊> 《计算机应用研究》 >改进的潜在语义分析中文摘录方法

改进的潜在语义分析中文摘录方法

     

摘要

中文摘录是一种实现中文自动文摘的便捷方法,它根据摘录规则选取若干个原文句子直接组成摘要.通过优化输入矩阵和关键句子选取算法,提出了一种改进的潜在语义分析中文摘录方法.该方法首先基于向量空间模型构建多值输入矩阵;然后对输入矩阵进行潜在语义分析,并由此得出句子与潜在概念(主题信息的抽象表达)的语义相关度;最后借助改进的优选算法完成关键句子选取.实验结果显示,该方法准确率、召回率和F度量值的平均值分别为75.9%、71.8%和73.8%,与已有同类方法相比,改进后的方法实现了全程无监督且在整体效率上有较大提升,更具应用潜质.%Chinese extractive summarization is a convenient method to realize Chinese text summarization,which extractes sentences and composites summarization corresponding to the extractive rules. This paper proposed an improved Chinese extractive summarization method using latent semantic analysis by optimizing input matrix and the key sentence selection algorithm. First, the method created multi-valued input matrix based on vector space model. Then it abtained the semantic correlation between sentences and latent conceptions(the abstract expression of theme) by latent semantic analysis for input matrix. At last,it extracted the key sentences by improved optimal selection algorithm. The experimental results show that the respective average for precision, recall and F-measure are 75. 9% ,71. 8% and 73. 8% ,and compared with the existing similar methods, the improved method becomes unsupervised completely and makes dramatical improvement of overall, so it has more potential application value.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号