首页> 中文期刊> 《计算机应用研究》 >基于对比学习的跨语言代码克隆检测方法

基于对比学习的跨语言代码克隆检测方法

     

摘要

代码克隆检测是提高软件开发效率、软件质量和可靠性的重要手段。基于抽象语法树(abstract syntax tree,AST)的单语言克隆检测已经取得了较为显著的效果,但跨语言代码的AST节点存在同义词、近义词且手工标注数据集成本高等问题,限制了现有克隆检测方法的有效性和实用性。针对上述问题,提出一种基于对比学习的树卷积神经网络(contrastive tree convolutional neuraln etwork,CTCNN)的跨语言代码克隆检测方法。该方法首先将不同编程语言的代码解析为AST,并对AST的节点类型和节点值作同义词转换处理,以降低不同编程语言AST之间的差异;同时,采用对比学习扩充负样本并对模型进行训练,使得在小样本数据集下能够最小化克隆对之间的距离,最大化非克隆对之间的距离。最后在公开数据集上进行了评测,精确度达到95.26%、召回率为99.98%、F_(1)为97.56%。结果表明,相较于现有的最好的CLCDSA和C4方法,该模型的检测精度分别提高了432%和3.73%,其F_(1)值分别提升了29.84%和6.29%,证明了所提模型是一种有效的跨语言代码克隆检测方法。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号