首页> 中文期刊> 《计算机应用研究》 >基于图注意力的高阶网络节点分类方法

基于图注意力的高阶网络节点分类方法

     

摘要

为了更好地学习网络中的高阶信息和异质信息,基于单纯复形提出单纯复形—异质图注意力神经网络方法—SC-HGANN。首先,用单纯复形提取网络高阶结构,将单纯复形转换为单纯复形矩阵;其次,使用注意力机制从特征单纯复形中得到异质节点的特征;再次,对同质和异质单纯复形矩阵进行卷积操作后,得到同质特征与异质特征,通过注意力算子进行特征融合;最后,得到目标节点的特征并将其输入到节点分类模块完成分类。与GCN、HGNN、HAN等基线方法相比,提出的方法在三个数据集上的macro-F1、micro-F1、precision和recall均有所提升。表明该方法能有效地学习网络中的高阶信息和异质信息,并能提升网络节点分类的准确率。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号