首页> 中文期刊> 《分析论及其应用:英文版》 >FINDING PROJECTIONS ONTO THE INTERSECTION OF CONVEX SETS IN HILBERT SPACES. II.

FINDING PROJECTIONS ONTO THE INTERSECTION OF CONVEX SETS IN HILBERT SPACES. II.

     

摘要

We present a parallel iterative algorithm to find the shortest distance projection of a given point onto the intersection of a finite number of closed convex sets in a real Hilbert space ; the number of sets used at each iteration stept corresponding to the number of available processors, may be smaller than the total number of sets. The relaxation coefficient at each iteration step is determined by a geometrical condition in an associated Hilbert space, while for the weights mild conditions are given to assure norm convergence of the resulting sequence. These mild conditions leave enough flexibility to determine the weights more specifically in order to improve the speed of convergence.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号