首页> 中文期刊>物理学报 >水平温差对环形浅液池内Marangoni-热毛细对流的影响∗

水平温差对环形浅液池内Marangoni-热毛细对流的影响∗

     

摘要

双向温差驱动下的Marangoni-热毛细对流在许多工程技术领域具有重要作用,但是,已有的大部分研究集中于单向温差作用下的流动。因此,采用数值模拟的方法研究了水平温差对双向温差驱动下的环形浅液池内Marangoni-热毛细对流的影响。在一个给定的顶部换热条件下,确定了不同水平温差作用下流动由轴对称稳态流动向三维非稳态流动转变的临界底部热流密度。结果表明,水平温差使得Marangoni-热毛细对流不稳定;随着水平温差的持续增强,稳态流动转变为一种规律的振荡流动,最终变得混乱;发现两种新的状态演化过程;确定了水平温差和垂直温差在共同驱动流体运动时各自发挥的作用;随着水平温差的增强,最初出现在中间区域的最高表面温度不断向热壁移动,在此过程中,内壁附近的流动增强,而外壁附近的流动减弱。%The surface tension driven convection with the bidirectional temperature differences plays a very important role in many natural processes. However, most of the previous researches have focused only on the convection induced by a unidirectional temperature difference. In this paper, under the coexistence of bidirectional temperature differences, we conduct a series of numerical simulations to investigate the effect of horizontal temperature difference on the Marangoni-thermocapillary convection in a shallow annular pool. The critical values of bottom heat flux Qcri for transition from an axisymmetric steady flow to a three-dimensional unsteady flow at different values of Ma are determined. The result shows the horizontal temperature difference has a negative effect on the stability of Marangoni-thermocapillary convection. The simulation predicts two new state evolutions which do not appear in the convection with a unidirectional temperature difference. When Q is less than the Qcri value of 2.4 × 10−3, the Marangoni convection without horizontal temperature difference is steady and axisymmetric. When a small horizontal temperature difference is imposed, the convection called basic flow keeps steady and axisymmetric. When the value of Ma exceeds a certain threshold value Macri , the convection becomes a three-dimensional unsteady flow. After this unsteady flow happens, with the increase of Ma, the surface temperature fluctuation evolves from a punctate wave to a hydrothermal wave, and finally to a chaotic wave. Accordingly, the temperature oscillation with time is a periodically regular oscillation at first, then turns into a chaotic mess. When Q is larger than the corresponding Qcri value of 2.4 × 10−3, without a horizontal difference, the convection is unsteady and no basic flow exists in the variation process of Ma. With the increase of Ma, the surface temperature fluctuation evolves from a double hydrothermal wave to a single hydrothermal wave, and finally to a chaotic wave. The vertical heat transfer and horizontal temperature difference have different effects on the fluid, and their separate roles in driving fluid are determined. The bottom heat flux causes the surface fluid to flow in two opposite radial directions as the highest surface temperature is located in the middle region, while the horizontal temperature difference induces the surface fluid to flow in a single radial direction as the highest surface temperature appears at the hot wall. The combined action of these two forces generates different flows. The increase of horizontal temperature difference leads to the highest surface temperature, which originally appears in the middle region due to the bottom heat flux, and moves toward the hot wall. In this process, the horizontal temperature difference has a positive effect on the enhancement of flow near inner wall but it has a negative effect on the flow near outer wall.

著录项

  • 来源
    《物理学报》|2015年第14期|1-8|共8页
  • 作者

    王飞; 彭岚; 张全壮; 刘佳;

  • 作者单位

    重庆大学;

    低品位能源利用技术及系统教育部重点实验室;

    动力工程学院;

    重庆 400044;

    重庆大学;

    低品位能源利用技术及系统教育部重点实验室;

    动力工程学院;

    重庆 400044;

    重庆大学;

    低品位能源利用技术及系统教育部重点实验室;

    动力工程学院;

    重庆 400044;

    重庆大学;

    低品位能源利用技术及系统教育部重点实验室;

    动力工程学院;

    重庆 400044;

  • 原文格式 PDF
  • 正文语种 chi
  • 中图分类
  • 关键词

    Marangoni-热毛细对流; 双向温差; 浅液池; 振荡流动;

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号