首页> 中文期刊> 《物理学报》 >基于L1范数的低场核磁共振T2谱稀疏反演方法

基于L1范数的低场核磁共振T2谱稀疏反演方法

         

摘要

The technology of low-field nuclear magnetic resonance (LF-NMR) is commonly used in food, agriculture, energy and chemical sectors due to its non-destructive, non-invasive, in situ, green and other advantages. Recently, this tech-nology played an increasingly large role in the field of food-safety supervision especially. In oil product quality testing, conventional T2 spectrum inversion methods such as the non-negative singular value decomposition (SVD) algorithm can only reflect T2 spectrum in a smooth model. However, for a sparse model, the inversion result of non-negative SVD algorithm is expected to be very glossy, leading to low resolution of T2 spectrum and inaccurate analysis of sample property. To solve this problem, we propose a sparse T2 spectrum inversion algorithm based on the L1 norm mini-mization constraint. In this paper, we establish the sparse model expression of NMR echo curve, and obtain the T2 sparse spectrum inversion results based on the inner truncated Newton-point method. Furthermore, the effectiveness of L1 sparse inversion algorithm is examined by the synthetic data of the smooth model and the spare model which have different peak numbers and signaltonoise ratios (SNRs). Synthetic results show that compared with the non-negative SVD algorithm, the L1 sparse algorithm is appropriate for both the smooth model and the sparse model with higher inversion accuracy. When the number of T2 peaks in a sparse model changes from a single peak to a quad peak, the L1 sparse algorithm can still obtain accurate inversion results, while the SVD algorithm results in a gradual deterioration, and cannot even determine the peak number. Under the sparse model, when the SNR of the measured NMR curve is gradually changed from 5 dB to 50 dB, the L1 sparse algorithm at 20 dB or more can obtain accurate inversion results which have less than 10% peak error and less than 5% peak position error and amplitude average error. However, the non-negative SVD algorithm cannot obtain accurate results at each SNR. Finally, multiple sets of frying oil samples are utilized to prove the accuracy and robustness of L1 sparse inversion algorithm. Inversion results of seven sets of frying oil samples show that the L1 sparse algorithm prefers the non-negative SVD algorithm. The obtained T2 spectrum by the L1 sparse algorithm shows three peaks obviously, and the T21 peak area ratio S21 and the single component relaxation time T2w are higher linear with respect to frying time than the results by non-negative SVD algorithm, which is useful for detecting the frying oil quality change. The inversion results of the T2 spectrum at different SNRs are consistent with the synthetic results, i.e., when the SNR is reduced, the T2 spectrum inversion results from the L1 sparse algorithm are better than those from the non-negative SVD algorithm when SNR is greater than 20 dB.%低场核磁共振技术(LF-NMR)以其无损、非侵入、原位和绿色等优势被广泛应用在食品、农业、能源和化工等行业,尤其是在食品安全监管领域发挥着越来越重要的作用.在油品品质检测中,常规非负奇异值分解(SVD)弛豫(T2)谱反演方法,只能反映光滑模型的T2谱,对于稀疏模型的反演结果存在较大差异,从而导致T2谱反演分辨率低和品质分析不准确的问题.针对这一问题,本文提出基于L1范数最小化约束的T2谱稀疏反演算法,建立NMR回波曲线的稀疏模型表达式,利用截断牛顿内点法求解L1范数最小化问题,得到稀疏模型的T2谱反演结果.通过构造光滑模型的T2谱、以及不同峰值数和信噪比的稀疏模型的T2谱,对比非负SVD算法和L1稀疏算法的反演效果,得到当信噪比大于20 dB时,L1稀疏算法能精确反演多峰T2谱,峰值幅度和峰位置均优于非负SVD算法结果.最后通过多组煎炸油样品进行低场核磁共振检测实验和不同信噪比数据的反演结果对比,验证了L1范数稀疏反演算法的准确性和优越性.

著录项

  • 来源
    《物理学报》 |2017年第4期|263-275|共13页
  • 作者单位

    吉林大学仪器科学与电气工程学院, 长春 130026;

    地球信息探测仪器教育部重点实验室吉林大学, 长春 130026;

    吉林大学仪器科学与电气工程学院, 长春 130026;

    吉林大学仪器科学与电气工程学院, 长春 130026;

    吉林大学仪器科学与电气工程学院, 长春 130026;

    吉林大学仪器科学与电气工程学院, 长春 130026;

    地球信息探测仪器教育部重点实验室吉林大学, 长春 130026;

  • 原文格式 PDF
  • 正文语种 chi
  • 中图分类
  • 关键词

    低场核磁共振; T2谱反演; 稀疏模型; L1范数最小化约束;

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号