首页> 外文学位 >Using a Chemically-Controlled CRISPR/Cas9 System to Understand and Develop New Genome Engineering Technologies
【24h】

Using a Chemically-Controlled CRISPR/Cas9 System to Understand and Develop New Genome Engineering Technologies

机译:使用化学控制的 CRISPR/Cas9 系统来了解和开发新的基因组工程技术

获取原文
获取原文并翻译 | 示例

摘要

Clustered regularly interspaced short palindromic repeat (CRISPR) systems have revolutionized our ability to investigate the genotype-phenotype relationships of specific genetic elements. The class 2 type II CRISPR system, involving a Cas9 endonuclease, has been widely adopted to aid in making specific genomic DNA changes. Precise DNA targeting by the CRISPR/Cas9 system is achieved using an RNA molecule that encodes a 20 nucleotide (nt) sequence complementary to the target site. Cas9 can be targeted to different loci in the genome by simply changing the 20 nt RNA-encoded sequence. Cas9 can then create DNA double-strand breaks (DSBs) at the target site and induce DNA repair to incorporate a specific DNA edit or uncontrolled insertions and deletions to knock out a gene. The CRISPR/Cas9 system has also been adapted to create a precise DNA targeting module that can recruit different DNA effector systems, such as transcriptional activators, DNA deaminases, and histone modifiers. While CRISPR/Cas9 has enabled new insights into genotype-phenotype relationships, challenges remain with the formation of unwanted edits, such as off-target edits or bystander edits with base editor systems. Furthermore, there is a lack of a generalizable method to create temporally-controlled Cas9-based effector systems to allow investigation of temporally-regulated genetic elements. Here, I use a chemically-inducible Cas9 (ciCas9) to explore the in vivo mechanisms of Cas9 off-target editing and to develop a generalizable system to confer temporal control over a variety of Cas9-based effector systems. Using engineered chemically-controlled base editors, I dissected the kinetics of bystander editing and how base editing at one nucleotide influences subsequent base edits within the same target site. I envision the results presented here could be used to inform future efforts to study temporally-regulated genetic elements and to engineer more efficient and accurate Cas9-based genome engineering systems.
机译:成簇的规则间隔短回文重复序列 (CRISPR) 系统彻底改变了我们研究特定遗传元件的基因型-表型关系的能力。涉及 Cas9 核酸内切酶的 2 类 II 型 CRISPR 系统已被广泛采用,以帮助进行特定的基因组 DNA 改变。CRISPR/Cas9 系统使用编码与靶位点互补的 20 个核苷酸 (nt) 序列的 RNA 分子实现 DNA 的精确靶向。只需改变 20 nt RNA 编码的序列,Cas9 就可以靶向基因组中的不同位点。然后,Cas9 可以在靶位点产生 DNA 双链断裂 (DSB),并诱导 DNA 修复以结合特定的 DNA 编辑或不受控制的插入和缺失以敲除基因。CRISPR/Cas9 系统还被调整为创建精确的 DNA 靶向模块,该模块可以募集不同的 DNA 效应子系统,例如转录激活因子、DNA 脱氨酶和组蛋白修饰剂。虽然 CRISPR/Cas9 使人们对基因型-表型关系有了新的见解,但仍然存在不需要的编辑的形成挑战,例如脱靶编辑或使用碱基编辑器系统进行旁观者编辑。此外,缺乏一种通用的方法来创建基于时间控制的基于 Cas9 的效应子系统,以允许研究时间调节的遗传元件。在这里,我使用化学诱导型 Cas9 (ciCas9) 来探索 Cas9 脱靶编辑的体内机制,并开发了一个可推广的系统来赋予对各种基于 Cas9 的效应器系统的时间控制。使用工程化的化学对照碱基编辑器,我剖析了旁观者编辑的动力学,以及一个核苷酸的碱基编辑如何影响同一靶位点内的后续碱基编辑。我设想这里介绍的结果可以用于为未来研究时间调控的遗传元件和设计更高效、更准确的基于 Cas9 的基因组工程系统的工作提供信息。

著录项

  • 作者

    Wei, Cindy T.;

  • 作者单位

    University of Washington.;

    University of Washington.;

    University of Washington.;

  • 授予单位 University of Washington.;University of Washington.;University of Washington.;
  • 学科 Molecular biology.;Biochemistry.;Genetics.
  • 学位
  • 年度 2022
  • 页码 188
  • 总页数 188
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Molecular biology.; Biochemistry.; Genetics.;

    机译:分子生物学。;生物化学。;遗传学。;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号