首页> 外文学位 >Thermal Stability, Radiation Defect Production, and Gas Behavior in Fine-Grained Refractory Metals and Alloys
【24h】

Thermal Stability, Radiation Defect Production, and Gas Behavior in Fine-Grained Refractory Metals and Alloys

机译:细晶粒难熔金属和合金的热稳定性、辐射缺陷产生和气体行为

获取原文
获取原文并翻译 | 示例

摘要

The unique behaviors of fine-grained metals have attracted significant interest in recent years due to their increased hardness and enhanced radiation tolerance manifested through annihilation of defects and He gas retention. However, their far from equilibrium state arising from their high interfacial densities renders fine-grained metals unstable at high temperatures, potentially vitiating the potential benefits of nanostructuring. Targeted doping has emerged as a strategy for alleviating thermal instabilities through reduction of the intrinsic driving force for grain growth by targeting the excess interfacial free energy or limiting the kinetic behavior. However, the addition of dopants has implications for the mechanical behavior and radiation tolerance of fine-grained metals. In this dissertation, numerous topics related to thermal stability, radiation defect production, and gas behavior are investigated in fine-grained BCC refractory metals and alloys. First, in situ TEM is utilized to study the transitions in the dominant thermodynamic stabilization mechanism in a fine-grained Mo alloy. In situ heating of a Mo-Au nanometallic multilayer microstructure demonstrated a transition from thermodynamically dominated stabilization at low temperatures to a kinetically stabilized microstructure at higher temperatures, coincident with predicted Au segregation and diffusion at those temperatures. Then, the influence of dopants and dispersoids on microstructural stability and defect production in fine-grained W alloys under ion irradiation are investigated through in situ TEM, with results indicating that the addition of dopants stabilizes the microstructure against irradiation induced grain growth and modifies the stress state around grain boundaries, augmenting their effective sink strength. Finally, the influence of helium gas implantation at grain boundaries on mechanical behavior in fine-grained tungsten is investigated through TEM and nanoindentation. The formation of helium filled cavities at the grain boundaries is shown to correlate to a significant reduction in material strength along with a reduction in dislocation activity and the initiation of abnormal dislocation behavior.
机译:近年来,细晶粒金属的独特行为引起了人们的极大兴趣,因为它们的硬度增加,辐射耐受性增强,表现为缺陷的消除和 He 气体的保留。然而,由于界面密度高,它们远非平衡状态,这使得细晶粒金属在高温下不稳定,从而可能削弱纳米结构的潜在优势。靶向掺杂已成为一种缓解热不稳定性的策略,它通过靶向过量的界面自由能或限制动力学行为来减少晶粒生长的内在驱动力。然而,添加掺杂剂对细晶粒金属的机械性能和辐射耐受性有影响。在本论文中,研究了与细晶粒 BCC 难熔金属和合金中的热稳定性、辐射缺陷产生和气体行为相关的许多主题。首先,利用原位 TEM 研究细晶粒 Mo 合金中主要热力学稳定机制的转变。Mo-Au 纳米金属多层微观结构的原位加热表明,在低温下从热力学主导的稳定性转变为在高温下动力学稳定的微观结构,这与预测的 Au 在这些温度下的偏析和扩散相吻合。然后,通过原位透射电镜研究了离子辐照下掺杂剂和分散体对细晶粒 W 合金微观结构稳定性和缺陷产生的影响,结果表明,掺杂剂的加入稳定了微观结构,防止了辐照诱导的晶粒生长,并改变了晶界周围的应力状态,从而提高了其有效的吸收强度。最后,通过 TEM 和纳米压痕研究了晶界处的氦气注入对细晶钨力学行为的影响。在晶界处形成充满氦的空腔与材料强度的显着降低以及位错活性的减少和异常位错行为的开始有关。

著录项

  • 作者

    Cunningham, William Streit.;

  • 作者单位

    State University of New York at Stony Brook.;

  • 授予单位 State University of New York at Stony Brook.;
  • 学科 Materials science.
  • 学位
  • 年度 2021
  • 页码 257
  • 总页数 257
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Materials science.;

    机译:材料科学。;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号