首页> 外文学位 >A Mobile Augmented Reality Thunderstorm Training Technique to Enhance Aviation Weather Theory Knowledge Curricula
【24h】

A Mobile Augmented Reality Thunderstorm Training Technique to Enhance Aviation Weather Theory Knowledge Curricula

机译:一种移动增强现实雷暴训练技术,以增强航空天气理论知识课程

获取原文
获取原文并翻译 | 示例

摘要

In the year 2020, 1,157 General Aviation (GA) accidents happened, of which 210 were fatal. Research suggests that some of these accidents are due to ineffective training in weather theory such as inconsistent program setup and reliance on 2D materials. Weather theory knowledge includes fundamental principles underlying various weather phenomena. This knowledge equips pilots with the ability to distinguish and effectively respond to diverse weather conditions they may encounter during flights. Inadequate training can lead to a poor level of competence in weather theory and impact pilot decision making. Research shows that most aviation programs focus on interpreting weather reports instead of teaching theory. In addition, current training usually occurs with 2D materials such as text, images, or video. For GA pilot students, it might be difficult to map 2D information into a 3D mental model and often resulting in discrepancies between course material and real-world situations. Extended Reality (XR) technologies, encompassing virtual reality (VR), augmented reality (AR), and mixed reality (MR) offer capabilities to address these problems. High-fidelity simulators can provide aircraft movements according to a pilot's input. However, such simulators are aircraft specific, costly to build and run, and difficult to access for pilot students. Compared to high-fidelity simulators, XR simulators are low-cost and can cover a range of aircraft. However, XR simulators often use head mounted displays (HMDs) to provide an immersive experience that still may not be affordable for pilot students. Despite an HMD-based simulator, a mobile-based XR system is even lower-cost and more accessible to students. Among the different XR systems running on mobile devices such as phone or tablet, mobile AR stands out due to its ability to provide both rotational and translational movement (6-DoF), while mobile VR is limited to rotational transformation only (3-DoF). Mobile AR presents immersive content through commodity devices such as smartphones and tablets and can use 2D printed markers to ensure accurate registration of virtual content. Numerous studies have found that mobile AR systems can improve knowledge retention, reduce cognitive load, facilitate collaboration, increase motivation, and engage students in learning new skills. However, the rendering capabilities, camera tracking, and screen size on mobile devices may limit AR's usability in complex phenomena and interactions. For example, weather topics such as thunderstorms have a lot of movement occurring inside the cloud, which can affect flight safety. Implementing a thunderstorm into an AR experience requires a realistic appearance, effective visual cues, and scenario activities to teach proper flight safety. To date, there has not been research on how to implement these into a mobile AR system. As a result, a new solution is needed. The research presented in this thesis studies the development and implementation of a thunderstorm simulation using AR deployed on mobile devices as a means to improve the teaching of GA pilot students. To create a thunderstorm's volumetric appearance, a particle system was implemented along with specialized shaders. Assessments and scenarios were then developed to provide specific experiences aimed at teaching pilot decision skills. To overcome limitations in the computational power of mobile devices, different viewing perspectives, specialized image targets, and user interfaces (UI) were also implemented to lower the rendering overhead, maintain stable tracking, and provide a smooth user experience. To better understand the application's performance, a technical evaluation was performed to study the rendering and tracking performance of the application across different devices. For the purposes of this thesis, AR on a commodity device will be referred to as mobile AR.
机译:2020 年,共发生 1,157 起通用航空 (GA) 事故,其中 210 起死亡。研究表明,其中一些事故是由于天气理论培训无效造成的,例如程序设置不一致和对 2D 材料的依赖。天气理论知识包括各种天气现象的基本原理。这些知识使飞行员能够区分和有效应对他们在飞行过程中可能遇到的各种天气条件。培训不足会导致天气理论能力水平不佳,并影响飞行员的决策。研究表明,大多数航空课程侧重于解释天气预报,而不是教授理论。此外,当前的训练通常使用 2D 材料进行,例如文本、图像或视频。对于 GA 试点学生来说,可能很难将 2D 信息映射到 3D 心智模型中,并且经常导致课程材料和实际情况之间存在差异。扩展现实 (XR) 技术,包括虚拟现实 (VR)、增强现实 (AR) 和混合现实 (MR),提供了解决这些问题的能力。高保真模拟器可以根据飞行员的输入提供飞机运动。然而,这种模拟器是特定于飞机的,建造和运行成本高昂,并且飞行员学生难以访问。与高保真模拟器相比,XR 模拟器成本低廉,可以覆盖一系列飞机。然而,XR 模拟器通常使用头戴式显示器 (HMD) 来提供身临其境的体验,飞行员学生可能仍然负担不起。尽管使用的是基于 HMD 的模拟器,但基于移动的 XR 系统成本更低,学生更容易使用。在手机或平板电脑等移动设备上运行的不同 XR 系统中,移动 AR 因其能够同时提供旋转和平移运动 (6-DoF) 而脱颖而出,而移动 VR 仅限于旋转变换 (3-DoF)。移动 AR 通过智能手机和平板电脑等商用设备呈现沉浸式内容,并且可以使用 2D 打印标记来确保虚拟内容的准确配准。大量研究发现,移动 AR 系统可以提高知识保留率、减少认知负荷、促进协作、提高积极性并吸引学生学习新技能。但是,移动设备上的渲染功能、摄像机跟踪和屏幕大小可能会限制 AR 在复杂现象和交互中的可用性。例如,雷暴等天气主题在云中发生大量移动,这可能会影响飞行安全。在 AR 体验中实现雷暴需要逼真的外观、有效的视觉提示和场景活动,以教授正确的飞行安全。迄今为止,还没有关于如何将这些应用到移动 AR 系统中的研究。因此,需要一种新的解决方案。本论文中提出的研究研究了使用部署在移动设备上的 AR 开发和实施雷暴模拟,作为改进 GA 飞行员学生教学的一种手段。为了创建雷暴的体积外观,实现了一个粒子系统以及专门的着色器。然后开发评估和场景,以提供旨在教授飞行员决策技能的特定经验。为了克服移动设备计算能力的限制,还实施了不同的观看视角、专门的图像目标和用户界面 (UI),以降低渲染开销、保持稳定的跟踪并提供流畅的用户体验。为了更好地了解应用程序的性能,我们执行了技术评估,以研究应用程序在不同设备上的渲染和跟踪性能。就本论文而言,商品设备上的 AR 将被称为移动 AR。

著录项

  • 作者

    Wang, Kexin.;

  • 作者单位

    Iowa State University.;

    Iowa State University.;

    Iowa State University.;

  • 授予单位 Iowa State University.;Iowa State University.;Iowa State University.;
  • 学科 Engineering.;Computer engineering.;Aerospace engineering.
  • 学位
  • 年度 2023
  • 页码 78
  • 总页数 78
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Engineering.; Computer engineering.; Aerospace engineering.;

    机译:工程。;计算机工程。;航空航天工程。;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号