首页> 外文学位 >Engineering Scalable Processes and Interfaces for 2D Electronic Devices
【24h】

Engineering Scalable Processes and Interfaces for 2D Electronic Devices

机译:为2D电子设备设计可扩展的流程和接口

获取原文
获取原文并翻译 | 示例

摘要

Scalable processing of well-defined interfaces is key not only for wider application of two-dimensional (2D) materials in technology but also for improved fundamental understanding. Atomic layer deposition has useful characteristics, especially self-limited growth at low temperatures, that make it well suited for the production of uniform interfaces. Related processes, such as other pulsed metal-organic chemical vapor deposition (MOCVD) techniques, can preserve some of these beneficial characteristics with additional flexibility in process design.This thesis reports the development of deposition processes for semiconductors, ferroelectrics, and dielectrics. In particular, a low-temperature atomic layer deposition (ALD) process for MoS2 was developed, and the semiconducting properties of films produced via growth and annealing were measured. A growth process for the ferroelectric semiconductor SnS was optimized for the 2D insulator substrate hBN, and epitaxy, mechanical sliding behavior, and electric polarization was characterized. An ALD process for MoOx with adjustable composition was developed, and the growth product was applied as a charge transfer doping dielectric for 2D semiconductors. Finally, the behavior of current injection at metal / 2D semiconductor contacts was studied, and ALD oxide interfacial layers were explored to improve contact behavior.Investigations of these disparate systems highlight both common and distinct challenges in deposition processes that are enabling for 2D electronic devices. In each case, interactions across van der Waals interfaces, while weak compared to covalent or ionic bonding, prove strong enough to markedly influence adjacent materials in ways ranging from charge transfer to epitaxy.
机译:定义明确的界面的可扩展处理不仅是二维 (2D) 材料在技术中更广泛应用的关键,也是提高基本理解的关键。原子层沉积具有有用的特性,特别是在低温下的自限生长,使其非常适合生产均匀的界面。相关工艺,如其他脉冲金属有机化学气相沉积(MOCVD)技术,可以保留其中一些有益特性,并在工艺设计中具有更大的灵活性。本论文报告了半导体、铁电体和电介质沉积工艺的发展。特别是,开发了MoS2的低温原子层沉积(ALD)工艺,并测量了通过生长和退火生产的薄膜的半导体性能。针对二维绝缘体衬底hBN优化了铁电半导体SnS的生长过程,并表征了外延、机械滑动行为和电极化。开发了一种成分可调的MoOx原子层沉积工艺,并将生长产物用作2D半导体的电荷转移掺杂电介质。最后,研究了金属/二维半导体触点处的电流注入行为,并探索了ALD氧化物界面层以改善接触行为。对这些不同系统的研究突出了沉积过程中的共同和独特的挑战,这些挑战使2D电子设备成为可能。在每种情况下,范德华界面之间的相互作用虽然与共价键或离子键相比较弱,但被证明足够强,足以以从电荷转移到外延的方式显着影响相邻材料。

著录项

  • 作者

    Moody, Michael J.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Nanotechnology.;Materials science.;Electrical engineering.
  • 学位
  • 年度 2022
  • 页码 210
  • 总页数 210
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Nanotechnology.; Materials science.; Electrical engineering.;

    机译:纳米技术。;材料科学.;电机工程。;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号