首页> 外文学位 >A Prognostic Model of Immunohistochemistry Biomarkers for High-Grade Serous Ovarian Cancer
【24h】

A Prognostic Model of Immunohistochemistry Biomarkers for High-Grade Serous Ovarian Cancer

机译:免疫组化生物标志物治疗高级别浆液性卵巢癌的预后模型

获取原文
获取原文并翻译 | 示例

摘要

Background: Ovarian cancer is the most lethal gynecologic cancer in the United States. High-grade serous ovarian cancer (HGSOC) accounts for 70%–90% of all ovarian cancer death. It is crucial to identify efficient prognostic biomarkers to inform treatment decision making. Method: Tissue microarrays and clinical data were obtained from patients diagnosed with invasive HGSOC enrolled in studies participating in the Ovarian Tumor Tissue Analysis consortium. Cox proportional hazard regression analysis (CoxPHR) with lasso penalty was performed to select the most important variables related to overall survival (OS) from clinical prognostic data and 9 immunohistochemistry (IHC) biomarkers of interest, MyD88, TLR4, FOLT1, CD8+ tumor-infiltrating lymphocytes (CD8+ TILs), p16, PTEN, progesterone receptor (PR), estrogen receptor (ER) and androgen receptor (AR) using a training set of 254 patients with all 9 IHC data. The external validation was conducted using the test set of 1563 patients with data of the selected IHC biomarker by lasso. Hazard ratios (HRs) and 95% confidence intervals (CIs) of the selected variables were estimated from the CoxPHR. Kaplan-Meier curves were used to visually compare survival across the selected variables. A nomogram was generated to estimate the 2-year and 3-year survival. Results: The median OS time of the training set was 5.04 years (95% CI 4.36–5.99 years). The selected variables from CoxPHR with lasso penalty include age at diagnosis, stage, debulking v status, AR, TLR4, CD8+ TILs, and p16. The median OS of the test set is 3.41 years (95% CI 3.21–3.63 years). The cases in the test set are at a more advanced stage. C-index from the prediction model fitting in the test set is 0.63. In the prediction model, CD8+ is inversely associated with the hazard of death (P for trend = 0.0011). Conclusion: The CoxPHR model with lasso penalty identifies four IHC biomarkers, AR, TLR4, CD8+, and p16, along with age at diagnosis, tumor stage, and debulking status, as prognostic factors for HGSOC survival. Further study containing more IHC candidates and clinical variables, such as chemotherapy response, and using continuous IHC scores should be performed to increase the accuracy of the prediction model for HGSOC survival.
机译:背景: 卵巢癌是美国最致命的妇科癌症。高级别浆液性卵巢癌 (HGSOC) 占所有卵巢癌死亡人数的 70%-90%。确定有效的预后生物标志物以为治疗决策提供信息至关重要。方法:组织微阵列和临床数据来自参加卵巢肿瘤组织分析联盟研究的被诊断为侵袭性 HGSOC 的患者。进行带套索惩罚的 Cox 比例风险回归分析 (CoxPHR),从临床预后数据和 9 个感兴趣的免疫组织化学 (IHC) 生物标志物、MyD88、TLR4、FOLT1、CD8+ 肿瘤浸润淋巴细胞 (CD8+ TILs)、p16、PTEN、孕激素受体 (PR)、雌激素受体 (ER) 和雄激素受体 (AR) 中使用 254 名患者的训练集和所有 9 个 IHC 数据。使用 1563 名患者的测试集进行外部验证,并使用套索选择的 IHC 生物标志物的数据。根据 CoxPHR 估计所选变量的风险比 (HRs) 和 95% 置信区间 (CIs)。使用 Kaplan-Meier 曲线直观地比较所选变量的生存率。生成列线图以估计 2 年和 3 年生存率。结果:训练集的中位 OS 时间为 5.04 年 (95% CI 4.36-5.99 年)。从具有套索惩罚的 CoxPHR 中选择的变量包括诊断年龄、分期、减瘤 v 状态、AR、TLR4、CD8+ TILs 和 p16。测试集的中位 OS 为 3.41 年 (95% CI 3.21-3.63 年)。测试集中的 case 处于更高级的阶段。拟合测试集的预测模型的 C 指数为 0.63。在预测模型中,CD8+ 与死亡风险呈负相关 (P 代表趋势 = 0.0011)。结论:具有套索惩罚的 CoxPHR 模型确定了 AR 、 TLR4 、 CD8 + 和 p16 四种 IHC 生物标志物,以及诊断年龄、肿瘤分期和减瘤状态,作为 HGSOC 生存的预后因素。应进行包含更多 IHC 候选药物和临床变量(例如化疗反应)的进一步研究,并使用连续 IHC 评分,以提高 HGSOC 生存预测模型的准确性。

著录项

  • 作者

    Fu, Zhuxuan.;

  • 作者单位

    University of Pittsburgh.;

  • 授予单位 University of Pittsburgh.;
  • 学科 Oncology.;Biostatistics.
  • 学位
  • 年度 2021
  • 页码 67
  • 总页数 67
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Oncology.; Biostatistics.;

    机译:肿瘤学。;生物统计学。;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号