首页> 外文学位 >Sustainability, Acceptance Risk Analysis and Machine Learning in Assessing Mechanical Properties and the Impact of Highway Materials in Transportation Infrastructure
【24h】

Sustainability, Acceptance Risk Analysis and Machine Learning in Assessing Mechanical Properties and the Impact of Highway Materials in Transportation Infrastructure

机译:可持续性、验收风险分析和机器学习在评估机械性能和公路材料对交通基础设施的影响

获取原文
获取原文并翻译 | 示例

摘要

Improving the performance and extending the service life of transportation infrastructure is a long standing goal of Federal Highway Administration (FHWA) and the transportation community. Accurate prediction of the mechanical properties of highway materials are indispensable for enhancing the sustainability and resilience of transportation infrastructure since it provides accurate inputs for pavement mechanistic-empirical (ME) design and prediction of pavement distresses, helping to optimally allocate the maintenance needs and reduce testing frequencies which account for costly expenditures. Accurate prediction of materials properties can also reduce the acceptance risks during quality assurance (QA) without conducting extensive testing. Concrete plays an important role in the construction of transportation infrastructure. Developing an empirical and/or statistical model for accurately predicting compressive strength remains challenging and requires extensive experimental work. Thus, the objective of the study was to improve the prediction of concrete compressive strength using ML algorithms. A ML pipeline was proposed in which a two-layer stacked model was developed by combining seven individual ML models. Feature engineering was implemented, and feature importance was evaluated to provide better interpretability of the data and the model. This study promotes a more thorough assessment of alternative ML algorithms for predicting material properties.In addition, the quality of highway materials and construction translate directly to performance. To develop a statistically sound QA specification, the risks to the agency and contractor must be well understood. In this study, a Monte Carlo simulation model was developed to systematically assess the acceptance risks and the implications on pay factors (PF). The simulation was conducted using typical acceptance quality characteristics (AQCs), such as strength, for Portland cement (PCC) pavements. The analysis indicated that specific combinations of contractor and agency sample sizes and population characteristics have a greater impact on acceptance risks and may provide inconsistent PF. The proposed methodology aids both agencies and producers to better understand and evaluate the impact of sample sizes and population characteristics on the acceptance risks and PF.Finally, the use of recycled materials is a key element in generating sustainable pavement designs to save natural resources, reduce energy, greenhouse gas (GHG) emissions and costs. This study proposed a methodological life cycle assessment (LCA) framework to quantify the environmental and economic impacts of using recycled materials in pavement construction and rehabilitation. The LCA was conducted on two roadway projects with innovative recycled materials, such as construction and demolition waste (CDW) and rock dust. The proposed LCA framework can be used elsewhere to quantify the environmental and economic benefits of using recycled materials in pavements.
机译:提高交通基础设施的性能并延长其使用寿命是联邦公路管理局 (FHWA) 和交通界的长期目标。准确预测公路材料的机械性能对于增强交通基础设施的可持续性和弹性是必不可少的,因为它为路面机械经验 (ME) 设计和路面困境预测提供了准确的输入,有助于优化分配维护需求并减少导致昂贵支出的测试频率。准确预测材料特性还可以降低质量保证 (QA) 期间的验收风险,而无需进行大量测试。混凝土在交通基础设施的建设中起着重要作用。开发一个用于准确预测抗压强度的经验和/或统计模型仍然具有挑战性,并且需要大量的实验工作。因此,该研究的目标是使用 ML 算法改进对混凝土抗压强度的预测。提出了一个 ML 管道,其中通过组合 7 个单独的 ML 模型开发了一个两层堆叠模型。实施了特征工程,并评估了特征重要性,以提供更好的数据和模型的可解释性。本研究促进了对用于预测材料特性的替代 ML 算法的更全面评估。此外,公路材料和结构的质量直接转化为性能。要制定统计上合理的 QA 规范,必须充分了解机构和承包商面临的风险。在这项研究中,开发了一个蒙特卡洛模拟模型来系统评估接受风险和对薪酬因素 (PF) 的影响。模拟是使用波特兰水泥 (PCC) 路面的典型验收质量特征 (AQC) 进行的,例如强度。分析表明,承包商和机构样本量和人口特征的特定组合对验收风险的影响更大,并且可能提供不一致的 PF。所提出的方法有助于机构和生产者更好地理解和评估样本量和人口特征对接受风险和 PF 的影响。最后,使用回收材料是产生可持续路面设计的关键要素,以节省自然资源、减少能源、温室气体 (GHG) 排放和成本。本研究提出了一种方法生命周期评估 (LCA) 框架,以量化在路面施工和修复中使用回收材料的环境和经济影响。生命周期评估是在两个道路项目中进行的,该项目使用了创新的回收材料,例如建筑和拆除废物 (CDW) 和岩石粉尘。拟议的 LCA 框架可用于其他地方,以量化在路面中使用回收材料的环境和经济效益。

著录项

  • 作者

    Zhao, Yunpeng.;

  • 作者单位

    University of Maryland, College Park.;

    University of Maryland, College Park.;

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;University of Maryland, College Park.;University of Maryland, College Park.;
  • 学科 Civil engineering.;Computer science.;Environmental engineering.
  • 学位
  • 年度 2023
  • 页码 173
  • 总页数 173
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Civil engineering.; Computer science.; Environmental engineering.;

    机译:土木工程。;计算机科学。;环境工程.;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号