首页> 外文学位 >Using Magnetic Methods to Better Understand the Thermal Structure of Fast-Spread, Lower Ocean Crust at Pito Deep
【24h】

Using Magnetic Methods to Better Understand the Thermal Structure of Fast-Spread, Lower Ocean Crust at Pito Deep

机译:使用磁性方法更好地了解 Pito Deep 快速扩散的低海壳的热结构

获取原文
获取原文并翻译 | 示例

摘要

More than 30% of oceanic crust is formed at fast-spreading ridges, but there remains much to learn about how the lower, gabbroic crust is accreted and cooled. This is partially due to conflicting evidence from direct and indirect studies of the lower crust and ophiolite analogues, leading to two end-member models for gabbroic crust formation which have different predictions for the thermal structure of the crust. The gabbro glacier model asserts the majority of heat is lost through the upper crust via hydrothermal circulation while the gabbroic crust cools conductively off-axis. The sheeted sills model requires efficient cooling throughout the crust within 2-3 km of the spreading center via deep hydrothermal circulation. These models are testable using magnetic techniques. As the lower ocean crust cools, magnetic minerals will lock in the magnetic field direction. If the crust is cooling during a magnetic reversal, the boundary between polarity intervals acts as a proxy isotherm in the lower crust. The slope of that isotherm will distinguish between the gabbro glacier model, which should have shallow isotherms dipping away from the ridge, and the sheeted sills model, where isotherms would steeply dip near the ridge. A 2017 cruise to Pito Deep, a tectonic exposure in fast-spread crust, recorded near-bottom magnetic data and collected oriented gabbroic samples to document a polarity boundary in the lower crust. This thesis developed a magnetic inversion technique to incorporate near-bottom anomaly data from multiple platforms over steep escarpments to identify the location of the polarity boundary at depth. Results show a large offset of the polarity boundary between the dike and gabbroic layers, implying that the gabbroic layer remains hotter for an extended period off-axis. Using oriented samples from a 1x1 km study area, I verified the location of a polarity boundary which remains horizontal for a minimum of 8 km off-axis. Finally, I use samples with multiple polarity components to determine a cooling rate in gabbroic crust. Our results are incompatible with deep hydrothermal cooling within 2-3 km of the spreading center, and instead promote the idea of slow cooling within 8 km of the spreading center.
机译:超过 30% 的洋壳形成于快速扩张的山脊上,但关于较低的辉长岩地壳是如何吸积和冷却的,还有很多需要了解的地方。这部分是由于来自下地壳和蛇绿岩类似物的直接和间接研究的证据相互矛盾,导致辉长岩地壳形成的两个端元模型对地壳的热结构有不同的预测。辉长岩冰川模型断言,大部分热量通过热液循环通过上部地壳流失,而辉长岩地壳则在离轴传导冷却。片状基台模型需要通过深热液循环对距离撒布中心 2-3 公里范围内的整个地壳进行有效冷却。这些模型可以使用磁性技术进行测试。随着低层海洋地壳冷却,磁性矿物将锁定在磁场方向上。如果地壳在磁反转期间冷却,则极性区间之间的边界将充当下地壳中的代理等温线。该等温线的坡度将区分辉长岩冰川模型和片状基岩模型,前者应具有远离山脊的浅等温线,后者等温线将在山脊附近陡峭下降。2017 年前往 Pito Deep 的巡航,在快速扩张的地壳中进行了构造暴露,记录了近底部磁性数据并收集了定向辉长岩样本,以记录下地壳中的极性边界。本论文开发了一种磁反转技术,以整合来自陡峭悬崖上多个平台的近底部异常数据,以确定深处极性边界的位置。结果显示,岩脉和辉长岩层之间的极性边界偏移很大,这意味着辉长岩层在离轴上长时间保持较热。使用来自 1x1 公里研究区域的定向样本,我验证了极性边界的位置,该边界在离轴至少 8 公里内保持水平。最后,我使用具有多个极性成分的样品来确定辉长岩壳中的冷却速率。我们的结果与撒布中心 2-3 公里内的深度热液冷却不相容,而是促进了撒布中心 8 公里内缓慢冷却的想法。

著录项

  • 作者

    Maher, Sarah.;

  • 作者单位

    University of California, San Diego.;

    University of California, San Diego.;

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;University of California, San Diego.;University of California, San Diego.;
  • 学科 Geophysics.;Plate tectonics.;Marine geology.
  • 学位
  • 年度 2021
  • 页码 170
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Geophysics.; Plate tectonics.; Marine geology.;

    机译:地球物理学。;板块构造。;海洋地质学.;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号