首页> 外文学位 >Nonlinear control of co-operating hydraulic manipulators.
【24h】

Nonlinear control of co-operating hydraulic manipulators.

机译:协作液压操纵器的非线性控制。

获取原文
获取原文并翻译 | 示例

摘要

This thesis presents the design, analysis, and numerical and experimental evaluation of nonlinear controllers for co-operation among several hydraulic robots operating in the presence of significant system uncertainties, non-linearities and friction. The designed controllers allow hydraulically driven manipulators to (i) co-operatively handle a rigid object (payload) following a given trajectory, (ii) share the payload and (iii) maintain an acceptable internal force on the object.; A general description of the kinematic and dynamic relations for a hydraulically actuated multi-manipulator system is presented first. The entire mathematical model incorporates object dynamics, robot dynamics, hydraulic actuator functions and friction dynamics. For the purpose of simulations, a detailed numerical simulation program of such a system is also developed, in which two three-link planar robot manipulators resembling the Magnum hydraulic manipulators manufactured by NE, interact with each other through manipulating a common object.; The regulating control problem is studied next, in which the desired position of the object and the corresponding desired link displacement change step-wise. Initially, a controller is designed based on a backstepping technique, assuming that full knowledge of the dynamics and kinematics of the system is available. The assumption is then relaxed and the control system is analyzed. Based on the analysis, the controller is then modified to account for the uncertainty of the payload, robot dynamic parameters and hydraulic functions.; Next, the regulating controller is extended to a tracking controller, which allows the object to follow a given trajectory and is robust against parameter uncertainties. Additionally, an observer is added to the controller to avoid the need of acceleration feedback.; To investigate the effect of friction force, the above controllers are examined by introducing the most recent and complete LuGre friction model into the system dynamics. The tracking controller is then redesigned to compensate the effect of friction. Observers are designed to observe the immeasurable friction states. Based on the observed friction states and estimated friction parameters, an appropriate friction compensation scheme is designed which does not directly use velocity in order to avoid the need of acceleration feedback by the controller.; Finally, the problem of "explosion of terms" coming from the backstepping method is solved by using the concept of dynamic surface control in which a low pass filter is integrated to avoid model differentiation.; Simulations are carried out for analysis of the control system and verification of the developed controllers. Experimental examinations are performed on an available hydraulic system consisting of two single-axis hydraulic actuators.
机译:本文提出了在存在明显系统不确定性,非线性和摩擦力的情况下运行的多个液压机器人之间进行协作的非线性控制器的设计,分析以及数值和实验评估。设计的控制器允许液压驱动的机械手(i)按照给定的轨迹协作处理刚性物体(有效载荷),(ii)共享有效载荷,并且(iii)保持对物体的可接受的内力;首先介绍液压驱动多机械手系统的运动学和动力学关系。整个数学模型包括对象动力学,机器人动力学,液压执行器功能和摩擦动力学。为了进行仿真,还开发了这种系统的详细数值仿真程序,其中两个类似于NE制造的Magnum液压操纵器的三连杆平面机器人操纵器通过操纵一个公共对象而彼此交互。接下来研究调节控制问题,其中对象的期望位置和相应的期望连杆位移逐步变化。最初,假设有充分的系统动力学和运动学知识,则基于后推技术设计控制器。然后放宽假设并分析控制系统。基于分析,然后修改控制器以解决有效载荷,机器人动态参数和液压功能的不确定性。接下来,将调节控制器扩展到跟踪控制器,该跟踪控制器允许对象遵循给定的轨迹并且对参数不确定性具有鲁棒性。另外,将观察者添加到控制器中,以避免需要加速度反馈。为了研究摩擦力的影响,通过将最新和完整的LuGre摩擦模型引入系统动力学中来检查上述控制器。然后重新设计跟踪控制器以补偿摩擦的影响。观察者旨在观察无法测量的摩擦状态。基于观察到的摩擦状态和估计的摩擦参数,设计了一种合适的摩擦补偿方案,该方案不直接使用速度,以避免控制器需要加速度反馈。最后,通过动态表面控制的概念解决了由后推法引起的“项爆炸”问题,其中集成了一个低通滤波器以避免模型差异。进行仿真以分析控制系统并验证开发的控制器。在由两个单轴液压执行器组成的可用液压系统上进行实验检查。

著录项

  • 作者

    Zeng, Hairong.;

  • 作者单位

    University of Manitoba (Canada).;

  • 授予单位 University of Manitoba (Canada).;
  • 学科 Engineering Mechanical.; Engineering Robotics.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 149 p.
  • 总页数 149
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号