首页> 外文学位 >Using Hydroacoustics to Investigate Biological Responses in Fish Abundance to Restoration Efforts in the Penobscot River, Maine
【24h】

Using Hydroacoustics to Investigate Biological Responses in Fish Abundance to Restoration Efforts in the Penobscot River, Maine

机译:使用水声声学技术研究缅因州Penobscot河中鱼类丰富度对恢复工作的生物学响应

获取原文
获取原文并翻译 | 示例

摘要

Spatiotemporal advantages linked to hydroacoustic sampling techniques have caused a surge in the use of these techniques for fisheries monitoring studies applied over long periods of time in marine systems. Dynamic physical conditions such as tidal height, boat traffic, floating debris, and suspended particle concentrations result in unwanted noise signatures that vary in intensity and location within a hydroacoustic beam over time and can be mixed with the acoustic returns from intended targets (e.g., fish). Typical processing filters applied over long term datasets to minimize noise and maximize signals do not address spatiotemporal fluctuations of noise in dynamic systems. We present a methodological approach to obtain fish counts from large hydroacoustic datasets collected in dynamic systems by 1) developing an automated processing algorithm that imposes spatially and temporally varying noise thresholds according to the signal-to-noise ratio present, 2) creating a fish count index standardized to the noise conditions present at the time of detection, and 3) validating the applied algorithm by manually quantifying the margins of error of automated fish counts from the processing algorithm. We demonstrate the efficacy of this method by applying it to a six-month hydroacoustic dataset collected in the tidal region of the Penobscot River, Maine USA. It enabled us to recover 60% of the data that would otherwise have been lost due to noise contamination. The successful implementation of this method allows for datasets with varying signal-to-noise ratios to be standardized based on the noise signature present, enabling researchers to maximize their data usage.;Quantifying how fish abundance changes after a significant portion of their natural habitat becomes re-accessible is critical to gauge the success of large restoration efforts. Because fish abundance also changes with naturally fluctuating environmental conditions, examining abundance relative to these conditions can indicate fish responses to both anthropogenic and natural river variation. A side-looking hydroacoustic system was used to estimate fish abundance in the Penobscot River, ME from 2010-2016, where 2010-2013 were pre-dam removal conditions, and 2014-2016 were post-dam removal conditions. The river was monitored during non-ice condition periods, roughly May to November annually. Automated data processing enabled continuous abundance estimates from fish tracks. A fourfold increase in median fish abundance occurred in the fall compared to spring and summer, regardless of dam presence. Concurrent with restoration activities, fish abundance increased approximately twofold pre- to post-dam removal. We examined the influence of natural environmental conditions including tide, discharge, temperature, diurnal cycle, day length, moon phase, as well as restoration activities (focusing on dam presence) on variability in fish abundance. Day length (or photoperiod) was the most important predictor variable in all eight time-series analyzed. During the fall migration, abundance was generally higher during outgoing tides, at night, and during relatively high river discharge. In the early fall, when daylength was between 11.28 h and 12 h (September 24th to October 6th) and water temperature was above 11.96 °C, an eightfold increase in fish abundance was recorded in post-dam removal years. Alewife stocking numbers increased post-dam removal relative to pre-dam removal years and likely contributed to the increased fish abundance. This is one of the first validated tools to continuously examine the response of fish abundance to a major river restoration activity. In this application, it significantly increased our understanding of how fish abundance changed in the Penobscot River as result of major restoration efforts and provides a basic understanding of fish responses to naturally fluctuating environmental conditions.
机译:与水声采样技术相关的时空优势已导致将这些技术用于在海洋系统中长期应用的渔业监测研究的激增。动态物理条件(例如潮汐高度,船只通行,漂浮的碎屑和悬浮颗粒物的浓度)会导致有害的噪声信号,这些噪声信号随时间的推移在水声束中的强度和位置会发生变化,并且可能与预期目标(例如鱼)的回声混合)。应用于长期数据集以最小化噪声和最大化信号的典型处理滤波器无法解决动态系统中噪声的时空波动问题。我们提供一种从动态系统中收集的大型水声数据集中获取鱼计数的方法,方法是:1)开发一种自动处理算法,根据当前的信噪比强加时空变化的噪声阈值; 2)创建鱼计数根据检测时存在的噪声条件对指数进行标准化,以及3)通过从处理算法中手动量化自动鱼类计数的误差范围来验证所应用的算法。通过将其应用于在美国缅因州Penobscot河的潮汐地区收集的六个月水声数据集,我们证明了该方法的有效性。它使我们能够恢复60%的数据,这些数据本来会由于噪声污染而丢失。这种方法的成功实施使得可以根据噪声特征对具有变化的信噪比的数据集进行标准化,从而使研究人员能够最大程度地利用其数据。量化鱼类在其自然栖息地的很大一部分变成后的丰度变化可访问性对于衡量大型修复工作的成功至关重要。由于鱼的丰度也会随着自然波动的环境条件而变化,因此,检查相对于这些条件的丰度可以表明鱼对人为和自然河流变化的反应。使用侧视水声系统来估算2010-2016年缅因州Penobscot河中鱼的丰度,其中2010-2013年是大坝拆除前的条件,而2014-2016年是大坝拆除后的条件。在每年大约5月至11月的非冰雪期,对河流进行了监测。自动化的数据处理可实现对鱼类轨迹的连续丰度估算。与春季和夏季相比,秋季的鱼类丰度中位数增加了四倍,而与大坝的存在无关。在进行恢复活动的同时,大坝拆除前和拆除后鱼的丰度增加了大约两倍。我们检查了自然环境条件(包括潮汐,流量,温度,昼夜周期,日长,月相)以及恢复活动(针对大坝的存在)对鱼类丰度变异性的影响。在分析的所有八个时间序列中,天长(或光周期)是最重要的预测变量。在秋季迁徙期间,潮汐泛滥,夜间以及相对较高的河流量通常都较高。在初秋时节,白天在11.28小时至12小时之间(9月24日至10月6日),水温高于11.96°C,在大坝撤除后的鱼类丰度增加了8倍。相较于大坝拆除前的年份,Alewife的蓄水数量增加了大坝拆除后的数量,并可能导致鱼类丰度增加。这是首批经过验证的工具,可以连续检查鱼类丰度对主要河流恢复活动的响应。在此应用程序中,它极大地增加了我们对Penobscot河中鱼类丰度如何进行重大修复工作的变化的理解,并提供了对鱼类对自然波动的环境条件响应的基本理解。

著录项

  • 作者

    Scherelis, Constantin C.;

  • 作者单位

    The University of Maine.;

  • 授予单位 The University of Maine.;
  • 学科 Aquatic sciences.;Acoustics.;Bioengineering.
  • 学位 M.S.
  • 年度 2017
  • 页码 102 p.
  • 总页数 102
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号