首页> 外文学位 >Nano-scale contacts: Morphology, adhesion and deformation.
【24h】

Nano-scale contacts: Morphology, adhesion and deformation.

机译:纳米级触点:形貌,附着力和变形。

获取原文
获取原文并翻译 | 示例

摘要

Nanoscale contacts are central to a wide range of modern technologies, e.g., MEMS switches and cold-welding patterning techniques. The deformation processes in nanoscale contacts are usually associated with individual defects that exist and move on length and time scale that together are beyond the resolution of most experiments. We employ molecular dynamics to bypass these difficulties in order to reveal the fundamental deformation and adhesive mechanisms and determine which experimentally adjustable parameters or choices of material affect contact behavior. We first focus on single asperity Au contact and deformation that occurs as two rough surfaces are brought together, loaded and then separated. The evolution of structure, mechanical and electronic properties are shown to be correlated with the detailed, highly localized dislocation dynamics. Our simulation results demonstrate excellent qualitative agreement with experiments. During the contact process, defects (e.g., stacking faults) are generated and annihilated, making it a highly irreversible, dissipative process. Consequently, when the system is subjected to repetitive contact and separation, stacking faults accumulate and result in phase transformations (i.e., FCC→HCP→FCC). The new structure, resulting from the phase transformations, has a lower Schmid factor and consequently exhibits larger tensile strength. Similar phase transformations are also observed during contact process at elevated temperatures, which may be aided by thermal fluctuations. We systematically examine the asperity contact process in terms of the work of adhesion between contacting surfaces, Gamma, asperity geometries (symmetric and asymmetric) and loading directions ([100], [110] and [111]). We find that one feature of the local contact shape is the equilibrium contact angle, which is prescribed by the Young-Dupre equation.;The plastic deformation during separation and the amount of material transfer upon separation are shown to strongly depend on the work of adhesion Gamma, the geometry of the contact and the crystallographic orientation relative to the loading direction. Finally, we examine the contact process involved in subtractive cold-welding patterning. We proposed a simple model to represent the deformation and failure of the film. This allows us to clarify the size dependence of the strength of the film, and offer accurate predications of the degree of deformation induced by the rigid stamp.
机译:纳米级触点对于各种现代技术至关重要,例如MEMS开关和冷焊构图技术。纳米级触点的变形过程通常与单个缺陷有关,这些缺陷存在并在长度和时间尺度上移动,这些缺陷共同超出了大多数实验的分辨率。我们利用分子动力学来绕开这些困难,以揭示基本的形变和粘合机理,并确定哪些实验可调节的参数或材料的选择会影响接触行为。我们首先关注单一粗糙表面的金接触和变形,这是由于将两个粗糙表面放在一起,加载然后分离而发生的。结构,机械和电子性能的演变与详细的,高度局部的位错动力学相关。我们的仿真结果证明了与实验极好的定性一致性。在接触过程中,产生并消除了缺陷(例如,堆垛层错),这使其成为高度不可逆的耗散过程。因此,当系统反复接触和分离时,堆叠故障会累积并导致相变(即FCC→HCP→FCC)。由相变产生的新结构具有较低的施密特因子,因此具有较大的拉伸强度。在高温下的接触过程中也观察到类似的相变,这可能受热波动的影响。我们根据接触表面之间的粘附力,伽玛,粗糙形状(对称和不对称)和加载方向([100],[110]和[111])系统地检查粗糙接触过程。我们发现,局部接触形状的一个特征是平衡接触角,这由Young-Dupre方程规定。;分离时的塑性变形和分离时的材料转移量强烈依赖于粘合功伽玛,接触的几何形状和相对于加载方向的晶体学取向。最后,我们研究了减法冷焊图形中涉及的接触过程。我们提出了一个简单的模型来表示薄膜的变形和破坏。这使我们能够弄清薄膜强度的尺寸依赖性,并为由刚性印模引起的变形程度提供准确的预测。

著录项

  • 作者

    Song, Jun.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 228 p.
  • 总页数 228
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号