首页> 美国卫生研究院文献>Journal of the Royal Society Interface >Non-uniform breaking of molecular bonds peripheral morphology and releasable adhesion by elastic anisotropy in bio-adhesive contacts
【2h】

Non-uniform breaking of molecular bonds peripheral morphology and releasable adhesion by elastic anisotropy in bio-adhesive contacts

机译:生物粘附接触中的弹性各向异性导致分子键周边形态和可释放粘附力的不均匀断裂

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biological adhesive contacts are usually of hierarchical structures, such as the clustering of hundreds of sub-micrometre spatulae on keratinous hairs of gecko feet, or the clustering of molecular bonds into focal contacts in cell adhesion. When separating these interfaces, releasable adhesion can be accomplished by asymmetric alignment of the lowest scale discrete bonds (such as the inclined spatula that leads to different peeling force when loading in different directions) or by elastic anisotropy. However, only two-dimensional contact has been analysed for the latter method (Chen & Gao 2007 J. Mech. Phys. Solids >55, 1001–1015 ()). Important questions such as the three-dimensional contact morphology, the maximum to minimum pull-off force ratio and the tunability of releasable adhesion cannot be answered. In this work, we developed a three-dimensional cohesive interface model with fictitious viscosity that is capable of simulating the de-adhesion instability and the peripheral morphology before and after the onset of instability. The two-dimensional prediction is found to significantly overestimate the maximum to minimum pull-off force ratio. Based on an interface fracture mechanics analysis, we conclude that (i) the maximum and minimum pull-off forces correspond to the largest and smallest contact stiffness, i.e. ‘stiff-adhere and compliant-release’, (ii) the fracture toughness is sensitive to the crack morphology and the initial contact shape can be designed to attain a significantly higher maximum-to-minimum pull-off force ratio than a circular contact, and (iii) since the adhesion is accomplished by clustering of discrete bonds or called bridged crack in terms of fracture mechanics terminology, the above conclusions can only be achieved when the bridging zone is significantly smaller than the contact size. This adhesion-fracture analogy study leads to mechanistic predictions that can be readily used to design biomimetics and releasable adhesives.
机译:生物粘附接触通常具有层次结构,例如在壁虎脚的角蛋白毛上聚集了数百个亚微米刮铲,或者在细胞粘附中分子键聚集成焦点接触。当分离这些界面时,可通过最小尺度的离散键的不对称对齐(例如,倾斜的刮铲在不同方向加载时导致不同的剥离力)来实现可释放的粘合,或者通过弹性各向异性来实现。然而,对于后一种方法,仅分析了二维接触(Chen&Gao 2007 J. Mech。Phys。Solids > 55 ,1001–1015())。诸如三维接触形态,最大与最小拉拔力比以及可释放附着力的可调性等重要问题无法回答。在这项工作中,我们开发了具有虚拟粘度的三维内聚界面模型,该模型能够模拟不粘连的不稳定性和不稳定性发生之前和之后的外围形态。发现二维预测显着高估了最大拉力与最小拉力之比。根据界面断裂力学分析,我们得出以下结论:(i)最大和最小拉拔力对应于最大和最小接触刚度,即“刚粘和顺从释放”,(ii)断裂韧性敏感裂纹的形态和初始接触形状可以设计成获得比圆形接触明显更高的最大-最小拉拔力比,并且(iii)由于粘合是通过离散键的聚集或称为桥接裂纹来实现的就断裂力学术语而言,只有在桥接区明显小于接触尺寸的情况下,才能得出上述结论。这种粘附-断裂类比研究导致了机械预测,该预测可轻松用于设计仿生剂和可剥离粘合剂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号