首页> 外文学位 >Time reversal techniques in electromagnetic wave propagation.
【24h】

Time reversal techniques in electromagnetic wave propagation.

机译:电磁波传播中的时间反转技术。

获取原文
获取原文并翻译 | 示例

摘要

The time reversal method is a novel scheme utilizing the scattering components in a highly cluttered environment to achieve super-resolution focusing beyond Rayleigh criteria. In acoustics, time reversal effects are comprehensively analyzed and utilized in underwater target detection and communication. Successful demonstrations of the time reversal method using low frequency waveform in acoustics have generated wide interest in utilizing time reversal method by radio frequency electromagnetic waves. However, applications of the time reversal method in electromagnetics are considered to be emerging research topics and lack extensive analyses and studies.; In this thesis, we present a systematic study in which a series of novel time reversal techniques have been developed for target detection and imaging in highly cluttered environments where higher order scattering is substantial. This thesis also contributes to insightful understanding of basic time reversal properties in electromagnetic (EM) wave propagation in such environment. EM time reversal focusing and nulling effects using both single and multiple antennas are first demonstrated by FDTD simulations. Based on these properties, single antenna time reversal detection indicates significant enhancement in detection capability over traditional change detection scheme. A frequency selection scheme utilizing the frequencies with strong constructive interference between the target and background environment is developed to further improve the performance of the time reversal detector. Moreover, a novel time reversal adaptive interference cancellation (TRAIC) detection scheme developed based on TR properties can obtain null of the background through the time reversal nulling effect and achieve automatic focusing on the target through the time reversal focusing effect. Therefore, the detection ability, dynamic range and signal to noise ratio of a radar system can be significantly enhanced by the time reversal method.; In highly cluttered environment, conventional radar imaging methods, such as synthetic aperture radar (SAR) suffer from higher order scattering, which result in random ghost patterns in the radar images. On the other hand the ghost patterns in the difference SAR imaging with and without targets also provide information about the scattering between the targets and the environment even when the targets are not directly "visible". We have developed a new imaging scheme based on the exploitation of the ghost patterns which is substantially enhanced by adding a time reversal procedure in the difference SAR scheme, referred to as TR-SAR. By matching the obtained ghost image with forward FDTD simulations using the scatters obtained from SAR imaging, a complete image of the point/extended target can be reconstructed with relatively high confidence. With a highly cluttered environment that generates sufficient secondary scattering, ghost images are distinctively different for distinctively different point/extended targets, yielding a high distinction correlation in the forward matching process.; The thesis contains both numerical simulation studies and experimental measurements. Finite-difference-time-domain (FDTD) technique has been employed for all the numerical simulations.
机译:时间反转方法是一种新颖的方案,它在高度杂乱的环境中利用散射分量来实现超分辨率聚焦,超出了瑞利标准。在声学方面,对时间反转的影响进行了综合分析,并用于水下目标的检测和通信。在声学中使用低频波形的时间反转方法的成功演示引起了人们对利用射频电磁波使用时间反转方法的广泛兴趣。然而,时间倒转方法在电磁学中的应用被认为是新兴的研究主题,并且缺乏广泛的分析和研究。在本文中,我们提出了一项系统的研究,其中开发了一系列新颖的时间倒转技术,用于在高度杂乱的高杂波环境中进行目标检测和成像。本论文还有助于深入了解这种环境下电磁(EM)波传播中的基本时间反转特性。 FDTD仿真首先演示了使用单天线和多天线的EM时间反转聚焦和归零效果。基于这些特性,单天线时间倒转检测表明检测能力明显优于传统的变化检测方案。开发了一种利用目标和背景环境之间具有强烈的建设性干扰的频率的频率选择方案,以进一步提高时间反转检测器的性能。此外,基于TR特性开发的新颖的时间逆向自适应干扰消除(TRAIC)检测方案可以通过时间逆向零陷效应获得背景的零点,并通过时间逆向聚焦效应实现对目标的自动聚焦。因此,通过时间逆转方法可以显着提高雷达系统的检测能力,动态范围和信噪比。在高度混乱的环境中,常规雷达成像方法(例如合成孔径雷达(SAR))会遭受更高阶的散射,从而导致雷达图像中出现随机的幻影图案。另一方面,即使在目标不是直接“可见”的情况下,在有和没有目标的情况下,差分SAR成像中的重影图案也提供了有关目标和环境之间散射的信息。我们已经开发了一种基于重影模式开发的新成像方案,该方案通过在差分SAR方案中添加时间反转过程(称为TR-SAR)而得到了显着增强。通过使用从SAR成像获得的散射将获得的重影图像与正向FDTD仿真进行匹配,可以相对较高的置信度重建点/扩展目标的完整图像。在产生足够的二次散射的高度杂乱的环境中,对于明显不同的点/扩展目标,重影图像也明显不同,从而在前向匹配过程中产生很高的区分相关性。本文包含数值模拟研究和实验测量。有限差分时域(FDTD)技术已用于所有数值模拟。

著录项

  • 作者

    Yi, Jiang.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Engineering Electronics and Electrical.; Physics Acoustics.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 201 p.
  • 总页数 201
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;声学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号