首页> 外文学位 >Parameter estimation and network identification in metabolic pathway systems.
【24h】

Parameter estimation and network identification in metabolic pathway systems.

机译:代谢途径系统中的参数估计和网络识别。

获取原文
获取原文并翻译 | 示例

摘要

Cells are able to function and survive due to a delicate orchestration of the expression of genes and their downstream products at the genetic, transcriptomic, proteomic, and metabolic levels. Since metabolites, the end products of gene expression, are ultimately the causative agents for physiological responses and responsible for much of the functionality of the organism, a comprehensive understanding of cell functioning mandates deep insights into how metabolism works. However, the regulation and dynamics of metabolic networks are often too complex to allow intuitive predictions, which thus renders mathematical modeling necessary as a means for assessing and understanding metabolic systems.;The construction of mathematical models for metabolic pathways is challenging, and a particularly complicated task is the estimation of model parameters and the identification of network structure. Recent advancements in modern high-throughput techniques are capable of producing time series data that characterize dynamic metabolic responses and enable us to tackle estimation and identification tasks using "top-down" or "inverse" approaches. However, extracting information regarding the structure and regulation of the system described by these data is difficult. The challenges can be generally categorized in four problem areas, namely: data related issues, model related issues, computational issues, and mathematical issues.;To develop improved methods for inverse modeling that are effective, fast, and scalable, this work proposes two novel algorithms namely Alternating Regression (AR) and Eigenvector Optimization (EO), both applied to S-systems in Biochemical Systems Theory (BST). The AR method employs a decoupling technique for systems of differential equations and dissects the complex nonlinear parameter estimation task into iterative steps of linear regression by utilizing the fact that power-law functions are linear in logarithmic space. AR is very fast in comparison to conventional methods and works well in many applications. In cases where convergence is an issue, the fast speed renders it feasible to dedicate some computational effort to identifying suitable start values and search settings. AR is beneficial for the identification of system structure in S-systems as well.;A modification of the AR algorithm is 3-way Alternating Regression (3-AR), which was applied here to parameter estimation in S-distributions that form a statistical distribution family motivated by S-systems. 3-AR preserves the properties of AR but iterates the algorithm between three phases of linear regression. The 3-AR algorithm is very fast and performs well for artificial, error-free and noisy datasets, as well as for random samples generated from traditional statistical distributions and for observed raw data.;The EO method is an extension of AR that is based on a matrix formed from multiple regression equations of the linearized decoupled S-systems. In contrast to AR, EO operates initially only on one term, whose parameter values are optimized completely before the complementary term is estimated. It was demonstrated that the EO algorithm converges fast and can be expected to converge in most cases, without necessarily requiring knowledge of the network structure. Furthermore, EO is easily extended to the optimization of network topologies with stoichiometric precursor-product constraints among equations.;To integrate all existing techniques and make inverse modeling more effective, this work proposes an operational "work-flow" that guides the user through the estimation process, identifies possibly problematic steps, and suggests corresponding solutions based on the specific characteristics of the various available algorithms. A significant consequence and advantage of the combined approach is that the result often consists of multiple parameter sets that are all consistent with the data and that can lead to hypotheses for further theoretical and experimental investigation. Finally, the work described here discusses a recent Dynamic Flux Estimation (DFE) approach, which resolves open issues of model validity and quality beyond residual errors. The necessity of fast solutions to biological inverse problems is discussed in the context of concept map modeling, which allows the conversion of hypothetical network diagrams into mathematical models.
机译:在基因,转录组,蛋白质组和代谢水平上,由于基因及其下游产物的精细表达,细胞能够运行并存活。由于代谢物是基因表达的最终产物,最终是导致生理反应的原因,并负责生物体的许多功能,因此对细胞功能的全面了解要求对代谢如何起作用有深刻的见解。然而,代谢网络的调节和动力学通常过于复杂,以至于无法进行直观的预测,因此使得数学建模成为评估和理解代谢系统的一种必要手段。代谢途径数学模型的构建具有挑战性,而且特别复杂任务是模型参数的估计和网络结构的识别。现代高通量技术的最新进展能够生成表征动态代谢反应的时间序列数据,并使我们能够使用“自上而下”或“逆向”方法处理估计和鉴定任务。然而,提取关于由这些数据描述的系统的结构和调节的信息是困难的。挑战通常可分为四个问题领域,即:与数据有关的问题,与模型有关的问题,计算问题和数学问题。为了开发有效,快速和可扩展的逆向建模改进方法,这项工作提出了两种新颖的方法算法,即交替回归(AR)和特征向量优化(EO),均应用于生化系统理论(BST)中的S系统。 AR方法对微分方程组采用解耦技术,并利用幂律函数在对数空间中的线性这一事实,将复杂的非线性参数估计任务分解为线性回归的迭代步骤。与传统方法相比,AR速度非常快,并且在许多应用中效果很好。在收敛是一个问题的情况下,快速的速度使其可用于确定确定合适的起始值和搜索设置的一些计算工作。 AR对识别S系统中的系统结构也很有帮助。AR算法的一种改进是三向交替回归(3-AR),在此将其应用于形成统计量的S分布中的参数估计。受S系统激励的分销家族。 3-AR保留了AR的属性,但在线性回归的三个阶段之间迭代了算法。 3-AR算法非常快,对于人工,无错误和嘈杂的数据集,以及从传统统计分布生成的随机样本和观察到的原始数据,都具有良好的性能。EO方法是基于AR的扩展由线性化解耦S系统的多个回归方程形成的矩阵。与AR相反,EO最初仅在一项上运行,其参数值在估计互补项之前已完全优化。事实证明,EO算法收敛速度很快,并且在大多数情况下可以收敛,而不必了解网络结构。此外,EO易于扩展为在方程之间具有化学计量先驱物-产物约束的网络拓扑优化。为了整合所有现有技术并使逆建模更有效,该工作提出了一个可操作的“工作流程”,指导用户完成估计过程,确定可能有问题的步骤,并根据各种可用算法的特定特征提出相应的解决方案。组合方法的一个重要结果和优点是,结果通常由多个参数集组成,这些参数集都与数据一致,并且可以得出用于进一步理论和实验研究的假设。最后,本文描述的工作讨论了一种最新的动态通量估计(DFE)方法,该方法解决了模型有效性和质量方面的开放性问题,而没有残留误差。在概念图建模的背景下讨论了快速解决生物逆问题的必要性,这可以将假设的网络图转换为数学模型。

著录项

  • 作者

    Chou, I-Chun.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Biology Bioinformatics.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 208 p.
  • 总页数 208
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号