首页> 外文学位 >Optimization approaches for geometric constraints in robot motion planning.
【24h】

Optimization approaches for geometric constraints in robot motion planning.

机译:机器人运动规划中几何约束的优化方法。

获取原文
获取原文并翻译 | 示例

摘要

This thesis focuses on the development of algorithms and tools for incorporating geometric constraints in robot motion planning. We consider two types of motion planning problems: (1) We first look at point-to-point motion planning for a single robot in the presence of geometric, kinematic, and dynamic constraints. (2) We then look at multiple robot path planning problems where the robots are required to visit a set of points in the presence of geometric constraints.;Point-to-point robot motion planning, i.e., obtaining control inputs to move the robot from one state to another, taking into consideration geometric, kinematic, and dynamic constraints is a fundamental problem in realizing autonomous robotic systems. Collision detection and dynamic simulation are two important modules that form an integral part of current sampling based randomized motion planners. The collision detection module ensures that the geometric constraints are satisfied and the dynamic simulation module ensures that the state evolution satisfy the differential constraints. Most research in sampling based motion planning algorithms treat these two modules as a black-box and use them to only obtain an input giving a feasible trajectory; an input is rejected if there is any collision along the trajectory. In the first part of this thesis, we show that using a complementarity based formulation of the dynamics, we can use the collision information to modify the applied inputs and obtain inputs that ensure a collision free trajectory. This is useful in applications where collision avoidance is the primary requirement. However, in the presence of intermittent contact between the robot and objects in the environment as seen in applications like grasping, manipulation, locomotion, the presence of contact makes accurate dynamic simulation challenging. Consequently, we study the sources of errors in current dynamic simulators.;The primary sources of stability and accuracy problems in state-of-the-art time steppers for multibody systems are (a) the use of polyhedral representations of smooth bodies, (b) the decoupling of collision detection from the solution of the dynamic time-stepping subproblem, and (c) errors in model parameters. We focus on formulations, algorithm development, and analysis of time-steppers to eliminate the first two error sources. As a partial solution to problem (a) above, we provide distance computation algorithms for convex objects modeled as an intersection of implicit surfaces. The use of implicit surfaces to describe objects for dynamic simulation is impaired by the lack of algorithms to compute exact distances between implicit surface objects. In contrast to geometric approaches developed for polyhedral objects, we formulate the distance computation problem as a convex optimization problem and use a primal-dual interior point method to solve the Karush-Kuhn-Tucker (KKT) conditions obtained from the convex program. For the case of polyhedra and quadrics, we establish a theoretical time complexity of O(n 1:5), where n is the number of constraints; in practice the algorithm takes linear time. We then provide solutions for problem (a) and (b) described above for simulating multibody systems with intermittent contact by incorporating the contact constraints as a set of complementarity and algebraic equations within the dynamics model. This enables us to formulate a geometrically implicit time-stepping scheme (i:e:, we do not need to approximate the distance function) as a nonlinear complementarity problem (NCP). The resulting time-stepper is therefore more accurate; further it is the first geometrically implicit time-stepper that does not rely on a closed form expression for the distance function. We first present our approach assuming the bodies to be rigid and then extend it to locally compliant or quasi-rigid bodies. We demonstrate through example simulations the fidelity of this approach to analytical solutions and previously described simulation results. This distance computation and dynamic simulation work may also be of interest outside of robot motion planning to applications in mechanical design and haptic interaction.;For multiple robot systems, the task requirements can also lead to geometric constraints and the system performance depends on task allocation to the robots in the presence of geometric constraints. In the second part of this thesis we study such a problem, namely, path planning for multiple robots (say K) required to cover a point set in the presence of inter-robot geometric constraints so that the task completion time is minimized. (Abstract shortened by UMI.)
机译:本文的重点是将几何约束纳入机器人运动规划的算法和工具的开发。我们考虑了两种类型的运动计划问题:(1)我们首先考虑在存在几何,运动学和动态约束的情况下,单个机器人的点对点运动计划。 (2)然后我们研究多个机器人路径规划问题,这些问题要求机器人在存在几何约束的情况下访问一组点。-点对点机器人运动规划,即获得控制输入以使机器人从从一个状态到另一个状态,同时考虑几何,运动和动态约束是实现自主机器人系统的基本问题。碰撞检测和动态模拟是两个重要模块,它们构成了基于电流采样的随机运动计划器的组成部分。碰撞检测模块确保满足几何约束,动态仿真模块确保状态演化满足微分约束。基于采样的运动计划算法的大多数研究都将这两个模块视为黑匣子,并仅使用它们来获得给出可行轨迹的输入。如果在轨迹上发生任何碰撞,则拒绝输入。在本文的第一部分中,我们表明使用基于互补性的动力学公式,我们可以使用碰撞信息来修改应用的输入并获得确保无碰撞轨迹的输入。这在避免碰撞是主要要求的应用中很有用。然而,如在抓取,操纵,移动等应用中所见,在机器人与环境中的对象之间存在间歇性接触的情况下,接触的存在使精确的动态仿真具有挑战性。因此,我们研究了当前动态仿真器中的错误源。在多体系统的最新时间步进器中,稳定性和精度问题的主要根源是(a)使用光滑体的多面体表示,(b )碰撞检测与动态时间步子问题的解耦,以及(c)模型参数错误。我们专注于公式,算法开发和时间步长分析,以消除前两个错误源。作为上述问题(a)的部分解决方案,我们提供了针对建模为隐式曲面相交的凸对象的距离计算算法。由于缺少计算隐式曲面对象之间精确距离的算法,因此无法使用隐式曲面描述用于动态仿真的对象。与为多面体对象开发的几何方法相反,我们将距离计算问题公式化为凸优化问题,并使用原始对偶内点法求解从凸程序获得的Karush-Kuhn-Tucker(KKT)条件。对于多面体和二次曲面,我们建立了理论时间复杂度O(n 1:5),其中n是约束的数量;实际上,该算法需要线性时间。然后,通过将接触约束作为一组互补性和代数方程式纳入动力学模型,我们为上述问题(a)和(b)提供了解决方案,以模拟具有间歇接触的多体系统。这使我们能够制定一个几何上隐式的时间步长方案(即,我们不需要近似距离函数)作为非线性互补问题(NCP)。因此,最终的时间步长更加准确;此外,它是第一个不依赖距离函数的封闭式表达式的几何隐式时间步进器。我们首先介绍我们的方法,假设这些实体是刚性的,然后将其扩展到局部兼容或准刚性的实体。我们通过示例仿真演示了这种方法对解析解决方案和前面描述的仿真结果的保真度。对于机械设计和触觉交互中的应用,这种距离计算和动态仿真工作也可能在机器人运动计划之外受到关注。对于多个机器人系统,任务要求也可能导致几何约束,并且系统性能取决于任务分配。机器人存在几何约束。在本论文的第二部分中,我们研究了这样一个问题,即在机器人之间存在几何约束的情况下,多个机器人(例如K)的路径规划需要覆盖一个点集,以使任务完成时间最小化。 (摘要由UMI缩短。)

著录项

  • 作者

    Chakraborty, Nilanjan.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Engineering Robotics.;Computer Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 179 p.
  • 总页数 179
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自动化技术、计算机技术;
  • 关键词

  • 入库时间 2022-08-17 11:38:26

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号