首页> 外文学位 >Nanoscale phase change memory: Device structure and material characterization.
【24h】

Nanoscale phase change memory: Device structure and material characterization.

机译:纳米级相变存储器:器件结构和材料表征。

获取原文
获取原文并翻译 | 示例

摘要

Solid state memories can store and retrieve large quantity of data at high speed. Solid-state non-volatile memory keeps information when power is turned off. The market for non-volatile memory (NVM) technology has grown substantially in recent years because of the emergence and application of many personal portable devices. However, Flash memory, the dominant NVM technology, is facing scaling challenges due to its fundamental limitations. As a result, research in various new memory technologies have been explored and accelerated. Among all the emerging NVM technologies, phase change memory (PCM) is one of the most promising candidates for the next generation, given its simple structure, high scalability, fast programming speed and long endurance. In this thesis, PCM cells with new nanoscale structures were proposed and demonstrated.;To scale down the phase change memory devices, we need to understand the phase change material properties in nanometer regime. Phase transition on both blanket film and the nanodot samples were studied, and size dependence was observed. We proposed a method to fabricate sub-20nm phase change nanodots by using self-assembled diblock copolymer lithography. X-ray diffraction, applied to the nanodot samples, showed crystallization transition for l5nm size particles for several phase change materials. This diblock copolymer patterning technique was also implemented to fabricate devices with small contact areas. The device programming region is composed by multiple 20nm contact holes. 40% reduction in RESET current was achieved compared to a conventional pore structure, due to the reduction in actual programming area. The same diblock copolymer sub-lithographic patterning was utilized to integrate PCM arrays.;Unidirectional programming and reading for phase change memory requires selection device in a memory array structure. Having a diode selection device can not only reduce the leakage current, but also have the potential to further increase the area density of phase change memory cells, by either minimizing single cell size or 3D-stacking of cross-point memory layers. Germanium nanowire has good scalability, low processing temperature and high conductivity, which can be a good candidate for selection device. After discussing the bottom-up synthesis of Ge nanowire growth mechanism and investigating its deterministic control. We demonstrated the phase change memory cell structure utilizing in-situ doped crystalline germanium nanowire diode. The vertical nanowire diode serves as the bottom electrode and selection device. The integrated memory cell shows promising characteristics such as low programming current, large SET/RESET resistance ratio, and rectifying behavior, which is required for high-density, 3D cross-point memory. The small contact area determined by the diameter of nanowires enables low programming current below 200microA for RESET and 501muA for SET. The average resistance ratio of SET/RESET state programmed by repetitive pulse programming is 82 which is large enough for large array operation. The heterojunction formed between in-situ doped Ge nanowires and Si substrate provides 100x isolation for cross-point memory operation.
机译:固态存储器可以高速存储和检索大量数据。固态非易失性存储器在电源关闭时会保留信息。近年来,由于许多个人便携式设备的出现和应用,非易失性存储器(NVM)技术的市场已大大增长。但是,作为主要的NVM技术的闪存由于其基本限制而面临着扩展挑战。结果,已经探索并加速了对各种新存储技术的研究。在所有新兴的NVM技术中,相变存储器(PCM)的结构简单,可扩展性高,编程速度快,使用寿命长,是下一代最有希望的候选者之一。本文提出并证明了具有新型纳米级结构的PCM单元。为了缩小相变存储器件的规模,我们需要了解纳米级相变材料的特性。研究了覆盖膜和纳米点样品上的相变,并观察到尺寸依赖性。我们提出了一种通过使用自组装二嵌段共聚物光刻技术来制造20nm以下的相变纳米点的方法。应用于纳米点样品的X射线衍射显示,对于15nm尺寸的颗粒,几种相变材料的结晶化转变。这种二嵌段共聚物构图技术也被用来制造具有小接触面积的器件。器件编程区域由多个20nm接触孔组成。与传统的孔结构相比,由于实际编程面积的减少,RESET电流减少了40%。相同的二嵌段共聚物亚光刻图案用于集成PCM阵列。相变存储器的单向编程和读取需要存储器阵列结构中的选择器件。具有二极管选择装置不仅可以减小泄漏电流,而且还可以通过最小化单个单元尺寸或交叉点存储层的3D堆叠来进一步增加相变存储单元的面积密度。锗纳米线具有良好的可扩展性,较低的加工温度和较高的电导率,可以作为选择器件的良好选择。在讨论了自底向上合成锗纳米线的生长机理并研究了其确定性控制之后。我们证明了利用原位掺杂的晶体锗纳米线二极管的相变存储单元结构。垂直纳米线二极管用作底部电极和选择装置。集成存储单元显示出有希望的特性,例如低编程电流,大的SET / RESET电阻比和整流性能,这是高密度3D交叉点存储所必需的。由纳米线的直径决定的小接触面积使得RESET的编程电流低于200µA,SET的编程电流低于501μA。通过重复脉冲编程来编程的SET / RESET状态的平均电阻比为82,对于大阵列操作而言足够大。原位掺杂的Ge纳米线和Si衬底之间形成的异质结为交叉点存储操作提供了100x隔离。

著录项

  • 作者

    Zhang, Yuan.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 136 p.
  • 总页数 136
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号