...
首页> 外文期刊>Journal of Physics, D. Applied Physics: A Europhysics Journal >Nanoscale amorphous interfaces in phase-change memory materials: structure, properties and design
【24h】

Nanoscale amorphous interfaces in phase-change memory materials: structure, properties and design

机译:纳米级非晶接口在相变存储器材料中:结构,属性和设计

获取原文
获取原文并翻译 | 示例
           

摘要

Phase-change memory (PCM) is one of the emerging technologies for the next generation of electric and optical memories. In a typical PCM device, a nanoscale amorphous interface can usually be observed. These nano amorphous interfaces are crucial because they could affect the phase transition characteristics of PCM materials, especially when the PCM devices are scaling down. In this work, according to results of our previous first-principles calculations and transmission electron microscope characterizations, we revisit the effects of three typical nano amorphous interfaces of PCM materials between different phases. We conclude that the bonding network and electronic features of the PCM material in these interfaces will be changed significantly depending on the material next to it. Different types of interface could either enhance the stability of amorphous (i.e. amorphous Si/amorphous Sb2Te3 interface) and metastable crystalline phases (i.e. amorphous GeTe/cubic Sb2Te3 interface) or promote crystallization (i.e. amorphous and crystalline Ge2Sb2Te5 interface) of the PCM materials. Therefore, a nano amorphous interface can be used to control the performance of PCM devices, such as data retention ability and crystallization speed. The present work also offers a feasible way to design novel nanoscale PCM materials based on the interface effects.
机译:相变存储器(PCM)是下一代电气和光学存储器的新兴技术之一。在典型的PCM设备中,通常可以观察到纳米级非晶界面。这些纳米非晶界面至关重要,因为它们可能影响PCM材料的相变特性,尤其是当PCM器件缩小时。在这项工作中,根据我们以前的第一原理计算和透射电子显微镜表征的结果,我们重新审视了不同相之间PCM材料的三种典型纳米非晶界面的影响。我们得出结论,这些接口中PCM材料的键合网络和电子特征将根据其旁边的材料而显着变化。不同类型的界面可以增强无定形(即无定形Si /非晶SB2T3界面)和亚型结晶相的稳定性(即非晶凝血/立方SB2Te3界面)或促进PCM材料的结晶(即非晶态和结晶GE2SB2TE5接口)。因此,纳米非晶界面可用于控制PCM器件的性能,例如数据保持能力和结晶速度。目前的工作还提供了一种基于界面效应设计新型纳米级PCM材料的可行方式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号