首页> 外文学位 >System-level modeling and mitigation of the impact of process variations on digital integrated circuits.
【24h】

System-level modeling and mitigation of the impact of process variations on digital integrated circuits.

机译:系统级建模和减轻工艺变化对数字集成电路的影响。

获取原文
获取原文并翻译 | 示例

摘要

The increasing variations in manufacturing process parameters with technology scaling has led to the adoption of statistical design methodologies in favor of the existing static or worst-case approaches. However, statistical circuit, analysis and optimization techniques have primarily been embraced at the lower levels of design abstraction, while system-level designers continue to use the conventional static approaches. This thesis demonstrates that modeling and mitigating the impact of process variations at the system-level is indeed possible and, more importantly, beneficial. Towards this end, we make four specific contributions: (1) Mitigating the performance lost by fully-synchronous systems to process variations using a multiple clock domain (MCD) design style. An efficient algorithm to compute the distribution of throughput of an MCD system is proposed and provides significant speed-up compared to Monte Carlo simulations. (2) Mitigating the impact of process variations on the leakage power dissipation of hilly-synchronous systems using system-level body-bias island partitioning. An efficient algorithm is proposed to compute the optimal body-bias island partitioning, and provides significant, speed-up compared to a competing approach while providing similar reduction ill the mean and variance of leakage power. (3) 3D-GCP, a system-level model for analyzing the impact of process variations on the frequency of fully-synchronous 3D ICs. The accuracy of the 3D-GCP model is verified against detailed SPICE based circuit simulations. (4) Mitigating the impact of process variations on the performance of fully-synchronous 3D ICs using a novel variability-aware 3D integration scheme. The proposed scheme significantly increases the number of assembled 3D systems that meet a specified performance constraint, as compared to conventional 3D integration.
机译:随着技术规模的扩大,制造工艺参数的变化越来越大,导致采用统计设计方法来支持现有的静态或最坏情况方法。但是,统计电路,分析和优化技术主要被包含在较低的设计抽象级别中,而系统级设计人员继续使用常规的静态方法。该论文表明,在系统级别上建模和减轻过程变化的影响确实是可能的,而且更重要的是,它是有益的。为此,我们做出了四个具体贡献:(1)缓解了完全同步系统使用多时钟域(MCD)设计风格处理变化所造成的性能损失。提出了一种有效的算法来计算MCD系统的吞吐量分布,与Monte Carlo仿真相比,该算法可显着提高速度。 (2)使用系统级的身体偏向岛划分来减轻工艺变化对丘陵同步系统泄漏功率耗散的影响。提出了一种有效的算法来计算最佳的身体偏向岛划分,并且与竞争方法相比,该算法提供了显着的提速,同时提供了类似的降低泄漏功率平均值和方差的方法。 (3)3D-GCP,一种系统级模型,用于分析工艺变化对全同步3D IC频率的影响。已针对基于SPICE的详细电路仿真验证了3D-GCP模型的准确性。 (4)使用一种新颖的可变性感知3D集成方案,减轻工艺变化对全同步3D IC性能的影响。与传统的3D集成相比,提出的方案显着增加了满足指定性能约束的组装3D系统的数量。

著录项

  • 作者

    Garg, Siddharth.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 172 p.
  • 总页数 172
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号