首页> 外文学位 >The tactile motion aftereffect.
【24h】

The tactile motion aftereffect.

机译:触觉动作的后效应。

获取原文
获取原文并翻译 | 示例

摘要

The tactile motion aftereffect (tMAE) is a perceptual phenomenon in which illusory motion is reported following adaptation to a unidirectionally moving tactile stimulus. Unlike its visual counterpart, relatively little is known about the tMAE. For that reason, the purpose of this dissertation was to gain a better understanding of the tMAE using both psychophysical and neuroimaging techniques. In a series of five experiments the skin was adapted using a plastic cylinder with a square-wave patterned surface. Chapter 2 consists of two experiments, both of which adapted the glabrous surface of the right hand Experiment 1 showed that the prevalence, duration, and vividness of the tMAE did not differ between the fingers (thumb excluded), palm and fingers (thumb included), and palm and fingers (thumb excluded). Thus, the divergent prevalence rates of two previous studies (Hollins & Favorov, 1994; Lerner & Craig, 1994) cannot be explained by the inclusion of the thumb in the latter study. Experiment 2 showed that as adapting speed increased from 15 to 75 rpm so did the prevalence, duration, and vividness of the tMAE. Previously it has been shown that the tMAE duration increases with adapting duration (Hollins & Favorov, 1994). Given that speed * duration = distance, increasing either adapting speed or duration also increases distance. As such, it was unclear which parameter(s) caused the observed increase in prevalence, duration, and vividness. Chapter 3 manipulated adapting duration (1, 2, and 4 min) and speed (30 and 60 rpm) in the same experiment, thereby allowing the effect of distance to be assessed in the interaction. The results showed that the prevalence, duration, and vividness of the tMAE increased with adapting speed. There was also a positive relationship between adapting duration and prevalence, but not duration or vividness, of the illusion. Distance was only a factor when it came to the tMAE duration. To gain insight into the peripheral neural basis of the tMAE, Chapter 4 measured the prevalence, duration, and vividness of the tMAE on skin areas that differ in their composition of fast adapting (FA) mechanoreceptive units, namely the right cheek, volar surface of the forearm, and glabrous surface of the hand. While there was no difference in duration or vividness between the skin surfaces tested, the tMAE was reported twice as often on the hand than the cheek and forearm, which did not differ significantly from one another. This finding suggests that the tMAE can be induced by adapting FA type I (FA I) units in the glabrous skin (hand) and the hair follicle units (cheek and forearm) and/or the FA I (cheek) and field (forearm) units in the hairy skin. Chapter 5 investigated the central neural basis of the tMAE using functional magnetic resonance imaging (fMRI). Of the areas shown to be responsive to tactile motion on the glabrous surface of the right hand, namely the contralateral (left) thalamus, postcentral gyrus (PCG), and parietal operculum, only the PCG showed evidence of the tMAF; that is, there was a sustained fMRI response following the offset of the illusion trials (cylinder rotating at 60 rpm), but not the control trials (cylinder rotating at 15 rpm), presumably reflecting illusory motion perception. Taken together, the experiments described herein expand our knowledge of the tMAE. Using a cylinder adapting apparatus, it was shown that: prevalence is the best measure of tMAE strength; the tMAE is not as robust as its visual counterpart; adapting duration and speed positively affect the prevalence of the tMAE; the tMAE is twice as prevalent on the glabrous than the hairy skin; the FAI and hair follicle units likely underlie the tMAE; the tMAE is likely caused by adapting direction selective neurons in the contralateral PCG.
机译:触觉运动后效应(tMAE)是一种知觉现象,在这种现象中,幻觉运动是在适应单向运动触觉刺激后报告的。与它的视觉对应物不同,对tMAE的了解相对较少。因此,本论文的目的是通过心理物理和神经影像技术对tMAE进行更好的理解。在一系列的五个实验中,使用具有方波图案表面的塑料圆柱体对皮肤进行了适应。第2章由两个实验组成,这两个实验都适应了右手的光滑表面。实验1显示,手指(不包括拇指),手掌和手指(包括拇指)之间,tMAE的患病率,持续时间和鲜艳度没有差异。 ,以及手掌和手指(不包括拇指)。因此,前两项研究(Hollins&Favorov,1994; Lerner&Craig,1994)的患病率存在​​差异,不能通过在后者的研究中包括拇指来解释。实验2表明,随着适应速度从15 rpm增加到75 rpm,tMAE的流行率,持续时间和生动性也随之提高。以前已经表明,tMAE持续时间随着适应时间的延长而增加(Hollins&Favorov,1994)。给定速度*持续时间=距离,增加适应速度或持续时间也会增加距离。因此,不清楚哪个参数导致观察到的患病率,持续时间和生动性增加。第3章在同一实验中操纵了适应时间(1、2和4分钟)和速度(30和60 rpm),从而允许在交互作用中评估距离的影响。结果表明,tMAE的患病率,持续时间和生动性随适应速度的增加而增加。错觉的持续时间与患病率之间存在正相关关系,但与持续时间或生动程度之间没有正相关关系。距离只是tMAE持续时间的一个因素。为了深入了解tMAE的周围神经基础,第4章测量了tMAE在快速适应(FA)机械感受器单元的组成不同的皮肤区域(即右颊,掌侧表面)上的患病率,持续时间和鲜艳度。前臂和手的无毛表面。尽管所测试的皮肤表面的持续时间或鲜艳度没有差异,但据报道手部tMAE的频率是脸颊和前臂的两倍,两者没有显着差异。这一发现表明,tMAE可以通过使无毛的皮肤(手)和毛囊单位(颊和前臂)和/或FA I(颊)和视野(前臂)中的FA I型(FA I)单位产生。毛状皮肤中的单位。第5章使用功能磁共振成像(fMRI)研究了tMAE的中枢神经基础。在右手无毛表面上显示出对触觉运动有反应的区域,即对侧(左)丘脑,中央后回(PCG)和顶盖,只有PCG显示出tMAF的证据。也就是说,在错觉试验(气缸以60 rpm旋转)偏移之后,存在持续的fMRI反应,但对照试验(圆筒以15 rpm旋转)没有偏移,这可能反映了虚幻的运动感觉。综上所述,本文所述的实验扩展了我们对tMAE的认识。使用气瓶适配设备表明:患病率是tMAE强度的最佳度量; tMAE不如视觉上的健壮性;调整持续时间和速度会积极影响tMAE的患病率; tMAE在毛发上的发生率是毛状皮肤的两倍; FAI和毛囊单位可能是tMAE的基础; tMAE可能是由对侧PCG中适应方向选择性神经元引起的。

著录项

  • 作者

    Planetta, Peggy Joanne.;

  • 作者单位

    Wilfrid Laurier University (Canada).;

  • 授予单位 Wilfrid Laurier University (Canada).;
  • 学科 Biology Neuroscience.;Psychology Experimental.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号