首页> 外文学位 >Giant plasmonic energy and momentum transfer on the nanoscale.
【24h】

Giant plasmonic energy and momentum transfer on the nanoscale.

机译:巨大的等离子体能量和动量传递在纳米尺度上。

获取原文
获取原文并翻译 | 示例

摘要

We have developed a general theory of the plasmonic enhancement of many-body phenomena resulting in a closed expression for the surface plasmon-dressed Coulomb interaction. It is shown that this interaction has a resonant nature. We have also demonstrated that renormalized interaction is a long-ranged interaction whose intensity is considerably increased compared to bare Coulomb interaction over the entire region near the plasmonic nanostructure. We illustrate this theory by re-deriving the mirror charge potential near a metal sphere as well as the quasistatic potential behind the so-called perfect lens at the surface plasmon (SP) frequency. The dressed interaction for an important example of a metal–dielectric nanoshell is also explicitly calculated and analyzed.;The renormalization and plasmonic enhancement of the Coulomb interaction is a universal effect, which affects a wide range of many-body phenomena in the vicinity of metal nanostructures: chemical reactions, scattering between charge carriers, exciton formation, Auger recombination, carrier multiplication, etc. We have described the nanoplasmonic-enhanced Förster resonant energy transfer (FRET) between quantum dots near a metal nanoshell. It is shown that this process is very efficient near high-aspect-ratio nanoshells.;We have also obtained a general expression for the force exerted by an electromagnetic field on an extended polarizable object. This expression is applicable to a wide range of situations important for nanotechnology. Most importantly, this result is of fundamental importance for processes involving interaction of nanoplasmonic fields with metal electrons.;Using the obtained expression for the force, we have described a giant surface-plasmon-induced drag-effect rectification (SPIDER), which exists under conditions of the extreme nanoplasmonic confinement. Under realistic conditions in nanowires, this giant SPIDER generates rectified THz potential differences up to 10V and extremely strong electric fields up to 105–10 6 V/cm. It can serve as a powerful nanoscale source of THz radiation. The giant SPIDER opens up a new field of ultraintense THz nanooptics with wide potential applications in nanotechnology and nanoscience, including microelectronics, nanoplasmonics, and biomedicine. Additionally, the SPIDER is an ultrafast effect whose bandwidth for nanometric wires is 20 THz, which allows for detection of femtosecond pulses on the nanoscale.;INDEX WORDS: Nanoplasmonics, Nanoplasmonic renormalization of Coulomb interaction, Surface-plasmon enhanced Förster energy transfer (FRET), Surface-plasmon-induced drag-effect rectification (SPIDER), Nanotechnology, Plasmonics on the nanoscale, Localized surface plasmons (LSPs), Surface plasmon polaritons (SPPs).
机译:我们已经发展了多体现象的等离子体增强的一般理论,从而导致表面等离子体激元修饰的库仑相互作用的闭合表达。结果表明,这种相互作用具有共振性质。我们还证明,与在等离激元纳米结构附近的整个区域中的裸库仑相互作用相比,重归一化相互作用是一种远距离相互作用,其强度大大提高。我们通过重新推导金属球体附近的镜面电荷电位以及表面等离激元(SP)频率下所谓完美透镜后面的准静态电位来说明这一理论。还明确地计算和分析了重要的金属-介电纳米壳实例的相互作用相互作用;库仑相互作用的重正态化和等离子体增强是普遍效应,它影响金属附近的多种多体现象。纳米结构:化学反应,电荷载流子之间的散射,激子形成,俄歇复合,载流子倍增等。我们已经描述了在金属纳米壳附近的量子点之间的纳米等离子体增强的Förster共振能量转移(FRET)。结果表明,该方法在高纵横比的纳米壳附近是非常有效的。我们还获得了电磁场在扩展的可极化物体上施加的力的一般表达式。该表达适用于对纳米技术重要的各种情况。最重要的是,这一结果对于涉及纳米等离子体场与金属电子相互作用的过程至关重要。;利用所获得的力表达,我们描述了一个巨大的表面等离子体激元效应拖​​曳整流(SPIDER),存在于极端纳米等离子体限制的条件。在纳米线的实际条件下,这种巨大的SPIDER产生高达10V的整流THz电势差和高达105-10 6 V / cm的超强电场。它可以作为太赫兹辐射的强大纳米级来源。巨大的SPIDER开创了超高强度THz纳米光学的新领域,在纳米技术和纳米科学中具有广泛的潜在应用,包括微电子学,纳米等离子体技术和生物医学。此外,SPIDER是一种超快效应,其纳米线的带宽为20 THz,可在纳米级检测飞秒脉冲。索引词:纳米等离子体,库仑相互作用的纳米等离子体重正化,表面等离子体增强的Förster能量转移(FRET) ,表面等离激元诱导的拖曳效应整流(SPIDER),纳米技术,等离子在纳米尺度上,局部表面等离激元(LSP),表面等离激元极化子(SPP)。

著录项

  • 作者

    Durach, Maxim.;

  • 作者单位

    Georgia State University.;

  • 授予单位 Georgia State University.;
  • 学科 Physics Electricity and Magnetism.;Physics Condensed Matter.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 92 p.
  • 总页数 92
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:38:12

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号