首页> 外文学位 >Energy-efficient pro-active techinques for safe and survivable cyber-physical systems.
【24h】

Energy-efficient pro-active techinques for safe and survivable cyber-physical systems.

机译:用于安全和可生存的网络物理系统的节能主动技术。

获取原文
获取原文并翻译 | 示例

摘要

Computing systems now monitor, coordinate, control, integrate and facilitate many physical processes from vehicle management and crisis response to managing data centers. Such systems, termed Cyber-Physical Systems (CPS), can consist of three major components---(i) human inhabitants, (ii) physical environment and (iii) computing entities. Trustworthiness of the CPSs depends on how safe the physical environment is and how survivable the human inhabitants are in the environment. Safety and survivability require pro-active operations in the CPSs so that the conditions violating these properties are predicted and avoided. Pro-activity, however, generally causes undesirable resource consumption overhead. Further, the complex interactions among the physical environment and computing entities can cause additional overhead and uncertainty in pro-actively ensuring the safety and survivability. Thus, a synergistic design of pro-activity is required which considers such complex interactions.;Further, to avoid redline temperatures for equipment safety in a data center, which is another example of CPSs, cooling systems are pro-actively pre-set for worst-case thermal conditions; thus wasting cooling energy. This dissertation develops a set of energy-efficient data center job scheduling algorithms that consider the cooling behavior, computing equipment power characteristics, and its impact on the cooling demand to minimize the data center energy consumption.;Lastly, pro-active routing protocols in Mobile Ad hoc NETworks (MANETs), the most common computing infrastructure for crisis response, maintain routes between any two nodes irrespective of data to transmit. This dissertation introduces autonomic tuning of the route update frequencies in such protocols to minimize the energy-overhead while maintaining the service reliability for information exchange. Further, self-managing routing protocols are developed to pro-actively construct energy-efficient routes in MANETs.;In this regard, synergistic planning and preparedness of crisis response, which is cyber-physical in nature, is performed to pro-actively avoid life losses during crises. To this effect, crisis response is modeled as a state-based, real-time stochastic system capturing the uncertainties due to human interactions. The research outcomes include a crisis preparedness tool using the industry standard Architecture Analysis and Design Language (AADL) to specify and analyze the proposed stochastic model.
机译:计算系统现在可以监视,协调,控制,集成并促进许多物理过程,从车辆管理和危机应对到管理数据中心。这种被称为网络物理系统(CPS)的系统可以由三个主要部分组成-(i)人类居民,(ii)物理环境和(iii)计算实体。 CPS的可信赖性取决于物理环境的安全性以及人类居民在环境中的生存能力。安全性和生存能力要求在CPS中进行主动操作,以便可以预测和避免违反这些特性的条件。但是,主动活动通常会导致不希望的资源消耗开销。此外,物理环境与计算实体之间的复杂交互会在主动确保安全性和生存能力时引起额外的开销和不确定性。因此,需要考虑这种复杂相互作用的协同主动设计。此外,为了避免数据中心设备安全的红线温度(这是CPS的另一个示例),必须预先预先设置冷却系统,以应对最恶劣的情况情况热条件;因此浪费了冷却能量。本文开发了一套节能的数据中心作业调度算法,该算法考虑了冷却行为,计算设备的功率特性及其对冷却需求的影响,以最大程度地降低数据中心的能耗。 Ad hoc NETworks(MANET)是用于应对危机的最通用计算基础架构,它在任何两个节点之间维护路由,而不考虑要传输的数据。本文在这种协议中引入了对路由更新频率的自动调整,以最大程度地减少能量开销,同时保持信息交换的服务可靠性。此外,还开发了自管理路由协议以主动构建MANET中的节能路由;在这方面,执行了本质上是网络物理的协同规划和危机应对准备,以主动避免生命危机中的损失。为此,将危机响应建模为基于状态的实时随机系统,以捕获由于人与人之间的交互而产生的不确定性。研究成果包括使用行业标准架构分析和设计语言(AADL)来指定和分析所建议的随机模型的危机防范工具。

著录项

  • 作者

    Mukherjee, Tridib.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 182 p.
  • 总页数 182
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号