首页> 外文学位 >Optimization and model reduction of time dependent PDE-constrained optimization problems: Applications to surface acoustic wave driven microfluidic biochips.
【24h】

Optimization and model reduction of time dependent PDE-constrained optimization problems: Applications to surface acoustic wave driven microfluidic biochips.

机译:时间依赖性PDE约束的优化问题的优化和模型减少:在声表面波驱动的微流体生物芯片中的应用。

获取原文
获取原文并翻译 | 示例

摘要

The optimal design of structures and systems described by partial differential equations (PDEs) often gives rise to large-scale optimization problems, in particular if the underlying system of PDEs represents a multiscale, multiphysics problem. Therefore, reduced order modeling techniques such as balanced truncation model reduction (BTMR), proper orthogonal decomposition (POD), or reduced basis methods (RB) are used to significantly decrease the computational complexity while maintaining the desired accuracy of the approximation. We are interested in such shape optimization problems where the design issue is restricted to a relatively small portion of the computational domain and in optimal control problems where the nonlinearity is local in nature. In these cases, it appears to be natural to rely on a full order model only in that specific part of the domain and to use a reduced order model elsewhere. A convenient methodology to realize this idea is a suitable combination of domain decomposition techniques and BTMR. We will consider such an approach for optimal control and shape optimization problems governed by advection-diffusion equations and derive explicit error bounds for the modeling error.;Another application considered is the shape optimization of an aorto-coronaric bypass. Finally, in order to address environmental issues, we present an optimal control problem where our aim is to reduce the water pollution in a region of choice.;As an application in life sciences, we will be concerned with the optimal design of capillary barriers as part of a network of microchannels and reservoirs on surface acoustic wave driven microfluidic biochips. Here, the state equations represent a multiscale multiphysics problem consisting of the linearized equations of piezoelectricity and the compressible Navier-Stokes equations. The multiscale character is due to the occurrence of fluid flow on different time scales. A standard homogenization approach by means of a state parameter results in a first-order time periodic linearized compressible Navier-Stokes equations and a second-order compressible Stokes system. The second-order compressible Stokes system provides an appropriate model for the optimal design of the capillary barriers.
机译:由偏微分方程(PDE)描述的结构和系统的优化设计通常会引起大规模的优化问题,特别是如果PDE的基础系统表示多尺度,多物理场问题。因此,使用降阶建模技术(例如平衡截断模型约简(BTMR),适当的正交分解(POD)或约简方法(RB))可显着降低计算复杂性,同时保持所需的近似精度。我们对这样的形状优化问题感兴趣,在这些问题中,设计问题仅限于计算域的一小部分,而在非线性的本质上是最优控制问题。在这些情况下,仅在域的特定部分依赖完整订单模型,而在其他地方使用简化订单模型似乎很自然。实现此想法的便捷方法是将域分解技术和BTMR进行适当组合。我们将考虑采用这种方法来解决由对流扩散方程控制的最优控制和形状优化问题,并为建模误差导出明确的误差范围。;另一个考虑的应用是主动脉冠状旁路的形状优化。最后,为了解决环境问题,我们提出了一个最佳控制问题,其目的是减少所选区域内的水污染。;作为生命科学中的应用,我们将关注毛细屏障的优化设计,例如:表面声波驱动的微流体生物芯片上微通道和储层网络的一部分。在这里,状态方程表示一个多尺度多物理场问题,由压电线性化方程和可压缩Navier-Stokes方程组成。多尺度特性是由于在不同的时间尺度上出现了流体流动。利用状态参数的标准均质化方法会产生一阶时间周期线性化可压缩Navier-Stokes方程和二阶可压缩Stokes系统。二阶可压缩斯托克斯系统为毛细屏障的最佳设计提供了合适的模型。

著录项

  • 作者

    Antil, Harbir.;

  • 作者单位

    University of Houston.;

  • 授予单位 University of Houston.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 173 p.
  • 总页数 173
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:38:14

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号