首页> 外文学位 >Computational prediction of protein function for cell cycle kinases and histone methyltransferases from conserved biophysical properties.
【24h】

Computational prediction of protein function for cell cycle kinases and histone methyltransferases from conserved biophysical properties.

机译:从保守的生物物理特性的细胞周期激酶和组蛋白甲基转移酶蛋白质功能的计算预测。

获取原文
获取原文并翻译 | 示例

摘要

A rapid accumulation of protein sequences and structures through genomic and structure consortiums has presented researchers with a large number of proteins with none or limited functional annotation. Furthermore the ability to assign specificity to a known and established functional class of proteins and attribute each protein to a particular biological pathway or process is continually an experimental challenge. Therefore the complete annotation of any one protein in the proteome is a multi-step process over decades of laboratory (experimental) science. Our main goal as computational biologists is to understand how well we can alleviate some of this work through computational experiments. Machine learning techniques can classify functionally related proteins where homology-transfer as well as sequence and structure motifs fail. An understanding of the capabilities within computational biology that can discriminate enzymatic function and specificity on a biochemical and cellular level is essential to this goal.;We foremost present a method that aimed at complementing homology-transfer in the identification of cell cycle control kinases from sequence alone. First, we identified functionally significant residues in cell cycle proteins through their high sequence conservation and biophysical properties. We then incorporated these residues and their features into support vector machines (SVM) to identify new kinases and more specifically to differentiate cell cycle kinases from other kinases and other proteins. By using these highly conserved, semi-buried residues and their biophysical properties we could distinguish cell cycle S/T kinases from other kinase families at levels of accuracy and coverage which outperform homology-transfer predictions. An application to the entire human proteome predicted several human proteins with limited previous annotations to be candidates for cell cycle kinases.;We then wanted to better understand the ability of conserved functional residue features to aid in further enzymatic specificity predictions. We set our method on the computational prediction of another type of transferase, the histone methyltransferases. The histone methyltransferases presented a unique classification problem since many of the proteins contain a similar structurally conserved domain. We identify biophysical diversity among the methyltransferase family of proteins and use this diversity in our SVM feature based predictions. We show that conserved biophysical residue features also out perform full sequence features for prediction accuracy in this class of transferases. Furthermore SVM feature based identifications of histone methyltransferases provide higher accuracy and coverage than homology transfer annotations.
机译:通过基因组和结构联盟对蛋白质序列和结构的快速积累,为研究人员提供了大量无功能注释或功能注释有限的蛋白质。此外,将特异性赋予已知的和已建立的功能类别的蛋白质并将每种蛋白质归因于特定的生物途径或过程的能力一直是实验的挑战。因此,蛋白质组中任何一种蛋白质的完整注释都是数十年来实验室(实验)科学的多步骤过程。作为计算生物学家,我们的主要目标是了解我们如何能够通过计算实验减轻某些工作。机器学习技术可以对功能相关的蛋白质进行分类,其中同源性转移以及序列和结构基序失败。对计算生物学内可在生化和细胞水平上区分酶功能和特异性的能力的理解对于实现这一目标至关重要。我们首先提出了一种旨在从序列鉴定细胞周期控制激酶中补充同源转移的方法单独。首先,我们通过其高序列保守性和生物物理特性在细胞周期蛋白中鉴定了功能上重要的残基。然后,我们将这些残基及其特征整合到支持向量机(SVM)中,以识别新的激酶,更具体地说,是将细胞周期激酶与其他激酶和其他蛋白质区分开来。通过使用这些高度保守的半埋残基及其生物物理特性,我们可以将细胞周期S / T激酶与其他激酶家族区分开来,其准确性和覆盖率均优于同源转移预测。在整个人类蛋白质组学中的一项应用预测了几种人类蛋白,这些蛋白具有有限的先前注释,可以作为细胞周期激酶的候选者。然后,我们希望更好地了解保守的功能残基特征有助于进一步酶促特异性预测的能力。我们在另一类转移酶(组蛋白甲基转移酶)的计算预测上设置方法。组蛋白甲基转移酶存在独特的分类问题,因为许多蛋白质包含相似的结构保守结构域。我们确定了蛋白质的甲基转移酶家族之间的生物物理多样性,并在我们基于SVM功能的预测中使用了这种多样性。我们显示,保守的生物物理残基特征还可以在此类转移酶中执行预测准确度的全序列特征。此外,与同源转移注释相比,基于SVM特征的组蛋白甲基转移酶鉴定可提供更高的准确性和覆盖率。

著录项

  • 作者

    Wrzeszczynski, Kazimierz O.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Chemistry Biochemistry.;Biology Bioinformatics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 185 p.
  • 总页数 185
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号