首页> 外文学位 >Fault Diagnosis in Digital Circuits
【24h】

Fault Diagnosis in Digital Circuits

机译:数字电路中的故障诊断

获取原文
获取原文并翻译 | 示例

摘要

The goals of fault diagnosis are to ascertain whether faults are present in (fault detection) and to identify them (fault location). Fault location is commonly performed with the aid of a fault dictionary. Fault dictionaries are constructed via fault simulation under the single fault assumption. The single fault-model often assumes a circuit is tested often enough such that no more than one physical defect is likely to occur between two consecutive test applications. This strategy is not valid when one physical defect manifests itself as multiple faults. It is observed that the presence of redundant faults also invalidates the frequent testing strategy, since a redundant fault may mask the existence of a detectable fault. In all these situations, a multiple fault model is required. However, in almost all practical cases a fault dictionary for multiple faults is infeasible to generate due to an exponential number of equivalence classes.;In this dissertation, we first present a VHDL-based CAD tool that integrates design error injection, simulation, and diagnosis for digital circuits. The tool uses an FPGA-based board to inject error models in the design and compute the error free and erroneous signatures of internal lines. The signatures are later used for detection and diagnosis of errors for the circuit under test (CUT). Several experiments were conducted to demonstrate the capabilities of the tool. The obtained results demonstrate that the tool could detect and locate the source faulty node(s) within the CUT.;Then, a new approach for a developed fault diagnosis method. Our approach is based on an enhanced deduction algorithm, which processes the actual response (effect) of CUT, to determine fault situations (causes). The main tool of our approach processes the response to deduce the internal signal values.;A multiple stuck at fault model is implicitly employed and no-fault enumeration is required. The enhanced deduction algorithm is applicable to complicated combinational circuits. The internal values obtained are used to determine fault situations in CUT compatible with the applied test T and the response. Our analysis can identify fault locations and values (s-a-0 or s-a-1). Our main result is that any stuck fault can be diagnosed. Preliminary results demonstrate that our technique always achieves great accuracy for detecting and locating the faults, saving a large amount of time, especially for more complicated combinational circuits. The problems solved by our procedure are using deterministic test vectors.;We next present a new approach for a developed fault diagnosis method. Our approach is based on an enhanced deduction algorithm and a backtracking strategy which can be regarded as a recursive process of value justification in which we first justify (explain) the values obtained at the primary outputs (POs). To justify a (0) value on the output of a- NAND gate (assuming it is normal), we need all the gate inputs to be (1). To justify a (1) value we need at least one input to have value (0). All the known values of internal normal lines must be justified by values of their predecessors. When both 0 and 1 values have been deduced for a gate output and it is critical, it is identified as normal and all its currently known values are analyzed.;In some cases, we need to decide to select one of the possible ways to justify a (1) value on the output of a- NAND gate. if a decision leads to an inconsistency (self-contradictory state) with the forward propagated value, the algorithm will backtrack to the last decision point and try an alternative decision. After a decision is made, all the implications resulting from that decision are performed. If no inconsistency is detected, a new decision point is necessary. Otherwise, a solution has been obtained. A solution is a set of values which could have occurred in the CUT, that is, a possible set of actual values. The main tool of our approach processes the response to deduce the internal signal values in all possible solutions.
机译:故障诊断的目的是确定故障是否存在(故障检测)并识别故障(故障位置)。通常通过故障字典来进行故障定位。故障字典是在单个故障假设下通过故障模拟构建的。单一故障模型通常会假设对电路进行了足够频繁的测试,因此在两个连续的测试应用之间可能不会出现一个以上的物理缺陷。当一个物理缺陷表现为多个故障时,此策略无效。可以看到,冗余故障的存在也使频繁测试策略无效,因为冗余故障可能掩盖了可检测故障的存在。在所有这些情况下,都需要一个多故障模型。但是,在几乎所有实际情况下,由于等价类的数量成指数级,因此无法生成多个故障的故障字典。在本文中,我们首先提出一种基于VHDL的CAD工具,该工具集成了设计错误注入,仿真和诊断功能。用于数字电路。该工具使用基于FPGA的电路板在设计中注入错误模型,并计算内部线路的无错误和错误签名。签名随后用于检测和诊断被测电路(CUT)的错误。进行了几次实验以证明该工具的功能。获得的结果表明该工具可以检测并定位CUT中的源故障节点。然后,这是一种开发故障诊断方法的新方法。我们的方法基于增强的演绎算法,该算法处理CUT的实际响应(效果),以​​确定故障情况(原因)。我们的方法的主要工具处理响应以推断内部信号值。隐式地采用多重卡在故障模型中,并且需要无故障枚举。增强推论算法适用于复杂的组合电路。获得的内部值用于确定与所应用的测试T和响应兼容的CUT中的故障情况。我们的分析可以确定故障位置和值(s-a-0或s-a-1)。我们的主要结果是可以诊断出任何卡住的故障。初步结果表明,我们的技术在检测和定位故障方面始终能达到很高的精度,从而节省了大量时间,尤其是对于更复杂的组合电路而言。我们的程序解决的问题是使用确定性测试向量。我们接下来提出了一种用于开发故障诊断方法的新方法。我们的方法基于增强的演绎算法和回溯策略,可以将其视为价值证明的递归过程,在此过程中,我们首先证明(解释)在主要输出(PO)处获得的值。为了证明一个“与非”门的输出为一个(0)值(假设它是正常的),我们需要所有的门输入均为(1)。为了证明(1)值的合理性,我们至少需要一个输入具有值(0)。内部法线的所有已知值都必须通过其前任值来证明。当为门输出推导出0和1值并且非常关键时,它将被识别为正常值并分析其所有当前已知值。;在某些情况下,我们需要选择一种可能的方法来证明a-NAND门输出上的(1)值。如果决策导致与前向传播值的不一致(自我矛盾的状态),则算法将回溯到最后一个决策点并尝试其他决策。做出决定后,将执行该决定所产生的所有含义。如果未检测到不一致,则需要一个新的决策点。否则,已获得解决方案。解决方案是可能在CUT中发生的一组值,即可能的一组实际值。我们方法的主要工具处理响应,以推断所有可能解决方案中的内部信号值。

著录项

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Electrical engineering.
  • 学位 D.Engr.
  • 年度 2017
  • 页码 60 p.
  • 总页数 60
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号