首页> 外文学位 >First Principles Insights into the Mechanism of Pyridine-Catalyzed CO2 Reduction on p-GaP Photoelectrodes
【24h】

First Principles Insights into the Mechanism of Pyridine-Catalyzed CO2 Reduction on p-GaP Photoelectrodes

机译:p-GaP光电电极上吡啶催化的CO2还原机理的第一原理见解

获取原文
获取原文并翻译 | 示例

摘要

Photoelectrochemical CO2 reduction is a promising technology for the sustainable production of liquid fuels but presents some fundamental challenges. Overcoming these challenges requires the development of efficient catalysts, which could be accelerated by the discovery of the chemical mechanism by which existing successful catalysts operate. This dissertation uses quantum-mechanics-based simulations to investigate the CO2 reduction mechanism in a photoelectrochemical system that uses a p-GaP photoelectrode and a pyridine (Py)-based co-catalyst in an acidified aqueous solution. In particular, we develop accurate models of the electrode solution/interface and use density functional theory methods to compute relevant properties of species at this interface. Based on these properties, we gain mechanistic insights, assess the validity of previously proposed mechanisms, and hypothesize and test new mechanisms.;A long-standing mechanistic hypothesis is that the homogeneous reduction of pyridinium (PyH+) to the 1-pyridinyl radical (1-PyH •) is an essential step for formation of the active catalyst. Herein we show that 1-PyH• is unstable and spontaneously transfers its electron to the electrode surface. In addition, we find at most a very small thermodynamic driving force for this reduction step; PyH + is reduced instead more favorably to intermediates contributing to possible formation of adsorbed dihydropyridine (DHP), a co-catalyst proposed in an alternative mechanism. Moreover, we provide strong evidence based on our calculations and experimental observations that the mechanism cannot be fully homogeneous and must involve surface-bound intermediates.;Adsorbed DHP was proposed to form via surface hydride and aqueous proton transfer to adsorbed Py and to subsequently reduce CO2 by transferring hydride to it. In a combined experimental-theoretical characterization of the electrode/solution interface, we find that water dissociation is thermodynamically favorable at this interface, producing stable adsorbed protons that could reduce to surface hydrides under operating conditions. In another combined investigation, we find that adsorbed Py reactivity supports the proposed mechanism for adsorbed DHP formation. Additionally, our calculations show that the proposed hydride transfers, unlike adsorbed proton transfers, are thermodynamically favored. However, we find that adsorbed DHP formation is likely kinetically hindered. We therefore propose and investigate alternative co-catalytic intermediates that might form and react with CO2 more favorably.
机译:光电化学法减少二氧化碳是可持续生产液体燃料的一项有前途的技术,但也带来了一些根本性的挑战。克服这些挑战需要开发高效的催化剂,而发现现有成功的催化剂所运行的化学机理可以加快催化剂的发展。本文采用基于量子力学的模拟方法研究了在酸性水溶液中使用p-GaP光电极和吡啶(Py)助催化剂的光电化学系统中CO2的还原机理。特别是,我们开发了电极溶液/界面的精确模型,并使用密度泛函理论方法来计算该界面处物质的相关特性。基于这些性质,我们获得了机械方面的见解,评估了先前提出的机制的有效性,并假设并测试了新机制。;一个长期存在的机制假设是,吡啶鎓(PyH +)均一还原为1-吡啶基(1 -PyH•)是形成活性催化剂的重要步骤。在此,我们表明1-PyH•是不稳定的,会自发地将其电子转移到电极表面。此外,我们发现此还原步骤最多只有很小的热力学驱动力;相反,PyH +被更有利地还原为有助于可能形成吸附二氢吡啶(DHP)的中间体,这是另一种机制中提出的助催化剂。此外,基于我们的计算和实验观察,我们提供了有力的证据,表明该机理不能完全均质,必须涉及表面结合的中间体。;有人提出通过表面氢化物和水质子转移将吸附的DHP形成为吸附的Py并随后减少CO2通过将氢化物转移到其中。在电极/溶液界面的组合实验-理论表征中,我们发现水的离解在该界面上在热力学上是有利的,从而产生稳定的吸附质子,在工作条件下该质子可以还原为表面氢化物。在另一个联合调查中,我们发现吸附的Py反应性支持了所提出的吸附DHP形成的机理。另外,我们的计算表明,与吸附的质子转移不同,拟议的氢化物转移在热力学上受到青睐。但是,我们发现吸附的DHP形成可能在动力学上受到阻碍。因此,我们提出并研究了可能会更有利地形成并与CO2反应的替代性共催化中间体。

著录项

  • 作者

    Lessio, Martina.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Chemistry.;Materials science.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 232 p.
  • 总页数 232
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号