首页> 外文学位 >Atomistic Simulations of Unfolded and Intrinsically Disordered Protein Ensembles and Biological Self-Assembly
【24h】

Atomistic Simulations of Unfolded and Intrinsically Disordered Protein Ensembles and Biological Self-Assembly

机译:展开和固有紊乱的蛋白质集合与生物自组装的原子模拟。

获取原文
获取原文并翻译 | 示例

摘要

Complex molecular networks of living organisms primarily involve proteins, bio-macromolecules which involve in every biochemical process of a living organism. As traditionally known, each protein carries out a unique function associated with the unique structure of each protein, which indeed is encoded in the amino acid sequence. Proteins acquire their unique "native" structure following one of the most fundamental biological self-organization process. The progress accomplished in understanding of this physical process, called protein folding, significantly evolved our current understanding of how living organisms function.;More recently, a more complete picture of the proteome from many organisms revealed that many proteins or regions in the proteins cannot form a stable structure, which are predicted to form more than one third of eukaryotic proteins. These proteins, referred as intrinsically disordered proteins, rather exist in a relatively huge conformational diversity as the ensembles of rapidly interconverting conformers. However, on the contrary to the traditional view, this group of proteins still perform many vital functions in the cell. In fact, their functionality possibly benefits from their being ability of adopting multiple conformers under similar conditions. While this versatile group of proteins modifies our understanding of the functioning properties of living organisms, many aspects are still remained much less well-understood, partly to blame the difficulty to work with them experimentally. In this regard, molecular simulations with accurate atomistic models provide a particular advantage not only resolving the heterogeneity in the conformational ensemble of these proteins but also providing the atomic level resolution of each conformer.;This dissertation mainly aims at broadening our understanding of IDPs and unfolded proteins with the use of atomistic simulations. Many different coherent aspects of unfolded and disordered proteins are studied during the course of this dissertation, including but not limited to sequence and temperature dependent responses of IDPs, post-translational modifications and disease-related characteristics of some IDPs. Each of these aspects studied in this dissertation also addresses where the atomistic simulations are relatively lacking and how the models and simulation techniques can possibly be improved.
机译:生命有机体的复杂分子网络主要涉及蛋白质,生物大分子,它们涉及生命有机体的每个生化过程。如传统上已知的,每种蛋白质执行与每种蛋白质的独特结构相关的独特功能,该结构实际​​上是在氨基酸序列中编码的。蛋白质按照最基本的生物学自组织过程之一获得其独特的“天然”结构。在了解这种称为蛋白质折叠的物理过程中所取得的进展,极大地发展了我们对活生物体如何运作的当前理解。最近,对来自许多生物体的蛋白质组的更完整了解显示,许多蛋白质或蛋白质中的区域无法形成稳定的结构,预计将形成超过三分之一的真核蛋白。这些蛋白称为内在无序蛋白,而是以相对巨大的构象多样性作为快速相互转换构象体的集合而存在。但是,与传统观点相反,这组蛋白质在细胞中仍然执行许多重要功能。实际上,它们的功能可能得益于它们在相似条件下能够采用多个构象异构体的能力。尽管这种多用途的蛋白质组改变了我们对生物机体功能特性的理解,但许多方面仍未得到很好的理解,部分归咎于实验性地使用它们。在这方面,具有精确原子模型的分子模拟不仅具有解决这些蛋白质构象集合中异质性的优点,而且还提供了每个构象子的原子级分辨率。使用原子模拟的蛋白质。在本文的研究过程中,对未折叠和无序蛋白的许多不同方面进行了研究,包括但不限于IDP的序列和温度依赖性反应,某些IDP的翻译后修饰和疾病相关特征。本文研究的每个方面都针对相对缺乏原子模拟的问题,以及如何改进模型和模拟技术。

著录项

  • 作者

    Zerze, Halime Gül.;

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Chemical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 220 p.
  • 总页数 220
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号