首页> 外文学位 >Carbon-carbon Bond Forming Reactions from Bis(carbene)-platinum(II) Complexes -and- Olefin Polymerization and Oligomerization Using Group 4 Postmetallocene Complexes.
【24h】

Carbon-carbon Bond Forming Reactions from Bis(carbene)-platinum(II) Complexes -and- Olefin Polymerization and Oligomerization Using Group 4 Postmetallocene Complexes.

机译:双(卡宾)-铂(II)配合物的碳-碳键形成反应-和-使用第4组后茂金属配合物进行烯烃聚合和低聚。

获取原文
获取原文并翻译 | 示例

摘要

A long-standing challenge in transition metal catalysis is selective C-C bond coupling of simple feedstocks, such as carbon monoxide, ethylene or propylene, to yield value-added products. This work describes efforts toward selective C-C bond formation using early- and late-transition metals, which may have important implications for the production of fuels and plastics, as well as many other commodity chemicals.;The industrial Fischer-Tropsch (F-T) process converts synthesis gas (syngas, a mixture of CO + H2) into a complex mixture of hydrocarbons and oxygenates. Well-defined homogeneous catalysts for F-T may provide greater product selectivity for fuel-range liquid hydrocarbons compared to traditional heterogeneous catalysts. The first part of this work involved the preparation of late-transition metal complexes for use in syngas conversion. We investigated C-C bond forming reactions via carbene coupling using bis(carbene)platinum(II) compounds, which are models for putative metal-carbene intermediates in F-T chemistry. It was found that C-C bond formation could be induced by either (1) chemical reduction of or (2) exogenous phosphine coordination to the platinum(II) starting complexes. These two mild methods afforded different products, constitutional isomers, suggesting that at least two different mechanisms are possible for C-C bond formation from carbene intermediates. These results are encouraging for the development of a multicomponent homogeneous catalysis system for the generation of higher hydrocarbons.;A second avenue of research focused on the design and synthesis of post-metallocene catalysts for olefin polymerization. The polymerization chemistry of a new class of group 4 complexes supported by asymmetric anilide(pyridine)phenolate (NNO) pincer ligands was explored. Unlike typical early transition metal polymerization catalysts, NNO-ligated catalysts produce nearly regiorandom polypropylene, with as many as 30-40 mol % of insertions being 2,1-inserted (versus 1,2-inserted), compared to <1 mol % in most metallocene systems. A survey of model Ti polymerization catalysts suggests that catalyst modification pathways that could affect regioselectivity, such as C-H activation of the anilide ring, cleavage of the amine R-group, or monomer insertion into metal-ligand bonds are unlikely. A parallel investigation of a Ti-amido(pyridine)phenolate polymerization catalyst, which features a five- rather than a six-membered Ti-N chelate ring, but maintained a dianionic NNO motif, revealed that simply maintaining this motif was not enough to produce regioirregular polypropylene; in fact, these experiments seem to indicate that only an intact anilide(pyridine)phenolate ligated-complex will lead to regioirregular polypropylene. As yet, the underlying causes for the unique regioselectivity of anilide(pyridine)phenolate polymerization catalysts remains unknown. Further exploration of NNO-ligated polymerization catalysts could lead to the controlled synthesis of new types of polymer architectures.;Finally, we investigated the reactivity of a known Ti-phenoxy(imine) (Ti-FI) catalyst that has been shown to be very active for ethylene homotrimerization in an effort to upgrade simple feedstocks to liquid hydrocarbon fuels through co-oligomerization of heavy and light olefins. We demonstrated that the Ti-FI catalyst can homo-oligomerize 1-hexene to C12 and C18 alkenes through olefin dimerization and trimerization, respectively. Future work will include kinetic studies to determine monomer selectivity by investigating the relative rates of insertion of light olefins (e.g., ethylene) vs. higher &agr;-olefins, as well as a more detailed mechanistic study of olefin trimerization. Our ultimate goal is to exploit this catalyst in a multi-catalyst system for conversion of simple alkenes into hydrocarbon fuels.
机译:过渡金属催化中的一个长期挑战是简单原料的选择性C-C键偶联,例如一氧化碳,乙烯或丙烯,以产生增值产品。这项工作描述了使用早期和晚期过渡金属选择性形成CC键的努力,这可能对燃料和塑料以及许多其他日用化学品的生产产生重要影响。;工业费-托(FT)工艺转化合成气(合成气,CO + H2的混合物)变成碳氢化合物和含氧化合物的复杂混合物。与传统的非均相催化剂相比,定义明确的F-T均相催化剂可以为燃料范围的液态烃提供更高的产品选择性。这项工作的第一部分涉及制备用于合成气转化的后期过渡金属络合物。我们研究了使用双(卡宾)铂(II)化合物通过卡宾偶联进行的C-C键形成反应,该化合物是F-T化学中推定的金属-卡宾中间体的模型。发现通过(1)化学还原或(2)外源膦与铂(II)起始络合物的配位可诱导C-C键形成。这两种温和的方法提供了不同的产物,即结构异构体,表明从卡宾中间体形成C-C键的至少两种不同机理是可能的。这些结果对于开发用于产生高级烃的多组分均相催化系统是令人鼓舞的。第二个研究途径集中于用于烯烃聚合的后茂金属催化剂的设计和合成。探索了由不对称苯胺(吡啶)酚盐(NNO)钳型配体支撑的新型4类络合物的聚合化学。与典型的早期过渡金属聚合催化剂不同,NNO连接的催化剂可产生几乎区域无规的聚丙烯,其中多达30-40 mol%的插入物被2,1插入(相对于1,2插入),相比之下,<1 mol%大多数茂金属系统。对Ti聚合模型催化剂的调查表明,可能会影响区域选择性的催化剂修饰途径不太可能,例如苯胺环的C-H活化,胺R-基团的裂解或单体插入金属-配体键中。对具有5元而不是6元Ti-N螯合环但保留了双阴离子NNO基序的Ti-酰胺基(吡啶)酚盐聚合催化剂的平行研究表明,仅保持该基序不足以产生不规则聚丙烯实际上,这些实验似乎表明只有完整的苯胺基(吡啶)酚盐连接复合物会导致区域不规则聚丙烯。迄今为止,尚不清楚苯胺(吡啶)酚盐聚合催化剂独特的区域选择性的根本原因。 NNO连接的聚合催化剂的进一步探索可能导致新型聚合物结构的受控合成。最后,我们研究了一种已知的非常好的Ti-苯氧基(亚胺)(Ti-FI)催化剂的反应性。用于乙烯均三聚的活性剂,旨在通过重烯烃和轻烯烃的共低聚将简单的原料升级为液态烃燃料。我们证明,Ti-FI催化剂可以分别通过烯烃二聚和三聚将1-己烯均聚到C12和C18烯烃上。未来的工作将包括通过研究轻质烯烃(例如乙烯)与高级α-烯烃的相对插入速率来确定单体选择性的动力学研究,以及对烯烃三聚的更详细的机理研究。我们的最终目标是在多催化剂体系中开发这种催化剂,以将简单的烯烃转化为烃类燃料。

著录项

  • 作者

    Klet, Rachel Christine.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Inorganic chemistry.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 186 p.
  • 总页数 186
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号