首页> 外文学位 >The stability and nonlinear dynamics of spatially-extended Langmuir circulation.
【24h】

The stability and nonlinear dynamics of spatially-extended Langmuir circulation.

机译:空间扩展朗缪尔环流的稳定性和非线性动力学。

获取原文
获取原文并翻译 | 示例

摘要

Langmuir circulation (LC) is a wind- and surface-wave-driven convective flow in the upper ocean that is operative on lateral scales from meters to several kilometers (the ocean submesoscales). Despite the importance of LC to the transfer of heat, mass, and momentum between the atmosphere and oceans, ocean general circulation models (OGCMs)---a key component of computational climate models---cannot resolve LC and other comparably fine-scale flows in the mixed layer (ML, the upper 50--100 meters of the ocean), whose effects must therefore be parameterized. While much is known about the physics of LC in small domains, having O(100) meter dimensions, a necessary prerequisite for parameterizing LC in OGCMs is a proper understanding of the stability and intrinsic nonlinear dynamics of horizontally-extended arrays of Langmuir cells.;In this theoretical investigation, a complement of linear and secondary stability analysis and direct numerical simulation is used to study three scenarios in which spatially-extended LC dynamics may be manifest. The simulations are strategically initialized using a superposition of the relevant base flow plus a small-amplitude contribution of the fastest-growing instability mode.;First, the influence of downwind modulation on the dynamics of Langmuir cells is investigated using an asymptotically reduced version of the Craik-Leibovich (CL) equations governing LC. The reduced CL (rCL) equations render numerical simulations in very long downwind domains feasible by filtering certain fast spatiotemporal dynamics. Secondary stability analysis and numerical simulations of the rCL equations confirm that the rCL equations admit dynamics reminiscent of LC. A key finding is a numerically-exact nonlinear defect traveling-wave solution of the rCL equations, associated with a novel downwind-modulated 2:1 spatial resonance phenomenon.;Next, the dynamics of LC in cross-wind extended domains is considered. For this purpose, downwind variability is suppressed. The effects of both density stratification and Coriolis accelerations are incorporated to study the effects of horizontal stratification, associated with submesoscale lateral fronts in the upper ocean, on LC. It is shown that LC, generally viewed as a prominent vertical mixing mechanism, may actually play a role in ML re-stratification.;Finally, the stability of steady downwind invariant LC states, in a stably vertically-stratified fluid, to long-wavelength cross-wind-varying disturbances is studied using spatial Floquet theory. A variety of secondary instabilities is identified and catalogued. Numerical simulations reveal the potential for certain long-wavelength instabilities to radically modify the uniformly patterned base state, deepening the ML in some cases and driving modulated internal-wave packets in others.
机译:朗缪尔环流(LC)是上层海洋中由风和面波驱动的对流,其作用范围是从几米到几公里的横向尺度(海洋亚中尺度)。尽管LC对于大气和海洋之间的热量,质量和动量传递非常重要,但海洋通用环流模型(OGCM)-计算气候模型的关键组成部分-无法解析LC和其他相对精细的尺度流在混合层(ML,海洋的上层50--100米)中,因此必须对其影响进行参数化。尽管在小范围内具有LC(O(100)仪表尺寸)的LC的物理领域已广为人知,但在OGCM中对LC进行参数化的必要前提是对Langmuir细胞水平延伸阵列的稳定性和固有非线性动力学的正确理解。在此理论研究中,线性和二次稳定性分析和直接数值模拟的补充被用来研究三种可能显示空间扩展的LC动力学的方案。使用相关基本流的叠加以及增长最快的不稳定模式的小幅度贡献从策略上初始化模拟;首先,使用渐近降阶形式的逆风调制研究了顺风调制对Langmuir细胞动力学的影响Craik-Leibovich(CL)方程控制LC。简化的CL(rCL)方程通过过滤某些快速的时空动力学,可以在很长的顺风区域进行数值模拟。 rCL方程的二次稳定性分析和数值模拟证实,rCL方程允许动力学使人联想到LC。一个关键的发现是rCL方程的精确数值上的非线性缺陷行波解,并伴有一种新型的顺风调制的2:1空间共振现象。;接下来,考虑了LC在侧风扩展域中的动力学。为此,抑制了顺风变化。结合了密度分层和科里奥利加速度的影响,以研究水平分层与上层海洋中亚尺度侧向锋有关的影响。结果表明,通常被认为是突出的垂直混合机制的LC实际上可能在ML重新分层中起作用。最后,稳定的顺风恒定LC状态在稳定的垂直分层流体中对长波的稳定性利用空间浮球理论研究了横风变扰动。识别并分类了各种次要不稳定性。数值模拟显示了某些长波不稳定性潜在地从根本上改变均匀图案化的基态,在某些情况下加深ML和在其他情况下驱动调制内波包的可能性。

著录项

  • 作者

    Zhang, Zhexuan.;

  • 作者单位

    University of New Hampshire.;

  • 授予单位 University of New Hampshire.;
  • 学科 Mechanical engineering.;Applied mathematics.;Physical oceanography.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 172 p.
  • 总页数 172
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号