首页> 外文学位 >A Unified Geometric Framework for Kinematics, Dynamics and Concurrent Control of Free-Base, Open-Chain Multi-Body Systems with Holonomic and Nonholonomic Constraints.
【24h】

A Unified Geometric Framework for Kinematics, Dynamics and Concurrent Control of Free-Base, Open-Chain Multi-Body Systems with Holonomic and Nonholonomic Constraints.

机译:具有完整和非完整约束的自由基础,开放链多体系统的运动学,动力学和并发控制的统一几何框架。

获取原文
获取原文并翻译 | 示例

摘要

This thesis presents a geometric approach to studying kinematics, dynamics and controls of open-chain multi-body systems with non-zero momentum and multi-degree-of-freedom joints subject to holonomic and nonholonomic constraints. Some examples of such systems appear in space robotics, where mobile and free-base manipulators are developed. The proposed approach introduces a unified framework for considering holonomic and nonholonomic, multi-degree-of-freedom joints through: (i) generalization of the product of exponentials formula for kinematics, and (ii) aggregation of the dynamical reduction theories, using differential geometry. Further, this framework paves the ground for the input-output linearization and controller design for concurrent trajectory tracking of base-manipulator(s).;In terms of kinematics, displacement subgroups are introduced, whose relative configuration manifolds are Lie groups and they are parametrized using the exponential map. Consequently, the product of exponentials formula for forward and differential kinematics is generalized to include multi-degree-of-freedom joints and nonholonomic constraints in open-chain multi-body systems.;As for dynamics, it is observed that the action of the relative configuration manifold corresponding to the first joint of an open-chain multi-body system leaves Hamilton's equation invariant. Using the symplectic reduction theorem, the dynamical equations of such systems with constant momentum (not necessarily zero) are formulated in the reduced phase space, which present the system dynamics based on the internal parameters of the system.;In the nonholonomic case, a three-step reduction process is presented for nonholonomic Hamiltonian mechanical systems. The Chaplygin reduction theorem eliminates the nonholonomic constraints in the first step, and an almost symplectic reduction procedure in the unconstrained phase space further reduces the dynamical equations. Consequently, the proposed approach is used to reduce the dynamical equations of nonholonomic open-chain multi-body systems.;Regarding the controls, it is shown that a generic free-base, holonomic or nonholonomic open-chain multi-body system is input-output linearizable in the reduced phase space. As a result, a feed-forward servo control law is proposed to concurrently control the base and the extremities of such systems. It is shown that the closed-loop system is exponentially stable, using a proper Lyapunov function. In each chapter of the thesis, the developed concepts are illustrated through various case studies.
机译:本文提出了一种几何方法来研究具有完整动力学和非完整约束的非零动量和多自由度关节的开链多体系统的运动学,动力学和控制。这种系统的一些例子出现在太空机器人中,在那里开发了移动和自由基础机械手。拟议的方法引入了一个统一的框架,用于通过以下方式考虑完整和非完整的多自由度关节:(i)运动学指数公式乘积的一般化;(ii)使用微分几何的动力学归约理论的集合。此外,该框架为基础操纵器的并发轨迹跟踪的输入输出线性化和控制器设计奠定了基础。在运动学方面,引入了位移子组,其相对配置流形为李群且已参数化使用指数图。因此,正向运动学和微分运动学的指数公式的乘积被推广为包括多自由度关节和开链多体系统中的非完整约束。;关于动力学,观察到相对运动对应于开链多体系统的第一个关节的配置流形使汉密尔顿方程不变。使用辛简化定理,在缩减相空间中建立了具有恒定动量(不一定为零)的此类系统的动力学方程,这些方程基于系统的内部参数给出了系统动力学。提出了非完整哈密顿力学系统的分步还原方法。 Chaplygin约简定理消除了第一步中的非完整约束,并且在无约束相空间中几乎辛的约简过程进一步简化了动力学方程。因此,所提出的方法可用于简化非完整的开链多体系统的动力学方程。关于控制,表明通用的自由基,完整或非完整的开链多体系统是输入-在缩小的相空间中可线性化的输出。结果,提出了一种前馈伺服控制法则,以同时控制这种系统的基础和末端。结果表明,使用适当的Lyapunov函数,闭环系统是指数稳定的。在论文的每一章中,通过各种案例研究说明了开发的概念。

著录项

  • 作者

    Chhabra, Robin.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Aerospace engineering.;Robotics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 200 p.
  • 总页数 200
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号