首页> 外文学位 >Engineering of lead chalcogenide nanostructures for carrier multiplication: Core/shell, 1D, and 2D.
【24h】

Engineering of lead chalcogenide nanostructures for carrier multiplication: Core/shell, 1D, and 2D.

机译:硫属元素化物铅纳米结构工程,用于载流子增殖:核/壳,一维和二维。

获取原文
获取原文并翻译 | 示例

摘要

Near infrared emitting semiconductors have been used widely in industry especially in solar-cell fabrications. The efficiency of single junction solar-cell can reach the Shockley-Queisser limit by using optimum band gap material such as silicon and cadmium telluride. The theoretical efficiency can be further enhanced through carrier multiplication, in which a high energy photon is absorbed and more than one electron-hole pair can be generated, reaching more than 100% quantum efficiency in the high energy region of sunlight. The realization of more than unity external quantum efficiency in lead selenide quantum dots solar cell has motivated vast investigation on lowering the carrier multiplication threshold and further improving the efficiency.;This dissertation focuses on synthesis of lead chalcogenide nanostructures for their optical spectroscopy studies. PbSe/CdSe core/shell quantum dots were synthesized by cation exchange to obtain thick shells (up to 14 monolayers) for studies of visible and near infrared dual band emissions and carrier multiplication efficiency. By examining the reaction mechanism, a thermodynamic and a kinetic model are introduced to explain the vacancy driven cation exchange. As indicated by the effective mass model, PbSe/CdSe core/shell quantum dots has quasi-type-II band alignment, possessing electron delocalized through the entire quantum dot and hole localized in the core, which breaks down the symmetry of energy levels in the conduction and valence band, leading to hot-hole-assisted efficient multi-exciton generation and a lower carrier multiplication threshold to the theoretical value.;For further investigation of carrier multiplication study, PbTe, possessing the highest efficiency among lead chalcogenides due to slow intraband cooling, is synthesized in one-dimensional and two-dimensional nanostructures. By using dodecanethiol as the surfactant, PbTe NRs can be prepared with high uniformity in width and resulted in fine quantum confinement features. The reaction can be explained by a soft-template assisted process, in which the lamellar lead-thiolate precursor transforms into rod-shape micelle in the existence of telluride anions by electrostatic attraction. Fine tuning the reaction condition by changing the solvent to oleylamine, lead telluride nanowires with length up to 200 nm can be prepared, which bundled together because of the strong dipole-dipole attraction between nanowires. Decreasing the amount of surfactant dodecanethiol in the synthesis produces lead telluride nanorings, which formed by attaching four small particles together, leaving the center void. To prepare two-dimensional nanoplatelets, mixture ligands containing two amines with different carbon chain length were used, which initiate oriented attachment of the nanoparticles to form square-shape nanoplatelets. By further adopting stronger binding ligands such as phosphonic acid, PbTe nanoplatelets with micrometer lateral dimension were prepared with extremely sharp near infrared photoluminescence (less than 40 meV), which has never be achieved in quantum dots and other nanostructures.
机译:近红外发射半导体已广泛用于工业中,特别是在太阳能电池制造中。通过使用最佳的带隙材料(例如硅和碲化镉),单结太阳能电池的效率可以达到Shockley-Queisser极限。通过载流子倍增可以进一步提高理论效率,在载流子中,高能光子被吸收,并且可以产生一个以上的电子-空穴对,从而在日光的高能区达到超过100%的量子效率。硒化铅量子点太阳能电池外部量子效率的实现已经达到一个统一的目标,为降低载流子倍增阈值,进一步提高效率进行了广泛的研究。本论文主要研究硫族硫化物铅纳米结构的光谱学研究。通过阳离子交换合成PbSe / CdSe核/壳量子点,得到厚壳(最多14个单层),用于研究可见光和近红外双波段发射和载流子倍增效率。通过检查反应机理,引入热力学和动力学模型来解释空位驱动的阳离子交换。如有效质量模型所示,PbSe / CdSe核/壳量子点具有准II型能带排列,具有通过整个量子点离域的电子和位于核中的空穴,从而破坏了能级中能级的对称性。导带和价带,从而导致热空穴辅助有效的多激子产生,并使载流子倍增阈值降低至理论值。为了进一步研究载流子倍增研究,PbTe由于硫带内带速慢而在硫族铅中具有最高效率一维和二维纳米结构合成了冷却。通过使用十二烷硫醇作为表面活性剂,可以制备出宽度均匀性高的PbTe NRs,并具有良好的量子限制特征。该反应可以通过软模板辅助过程来解释,其中在存在碲化物阴离子的情况下,层状硫醇铅前体通过静电吸引转变为棒状胶束。通过将溶剂更改为油胺来微调反应条件,可以制备长度最大为200 nm的碲化铅纳米线,由于纳米线之间有很强的偶极-偶极吸引力,因此将它们捆绑在一起。减少合成中表面活性剂十二烷硫醇的量会产生碲化铅纳米环,该环是通过将四个小颗粒附着在一起而形成的,中间没有空隙。为了制备二维纳米片,使用了包含两种具有不同碳链长度的胺的混合配体,其启动了纳米粒子的定向附着以形成方形纳米片。通过进一步采用更强的结合配体(如膦酸),制备了具有微米级横向尺寸的PbTe纳米片,具有极尖锐的近红外光致发光(小于40 meV),这在量子点和其他纳米结构中是无法实现的。

著录项

  • 作者

    Lin, Qianglu.;

  • 作者单位

    New Mexico State University.;

  • 授予单位 New Mexico State University.;
  • 学科 Chemical engineering.;Nanotechnology.;Materials science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号