首页> 外文会议>応用物理学会春季学術講演会;応用物理学会 >Effect of Core Size and Shell Thickness on Charge Carrier Transport in Core@Shell Lead Chalcogenide Colloidal Nanocrystals
【24h】

Effect of Core Size and Shell Thickness on Charge Carrier Transport in Core@Shell Lead Chalcogenide Colloidal Nanocrystals

机译:核心尺寸和壳体厚度对核心硫化物胆晶胶体纳米晶体电荷载流子的影响

获取原文

摘要

Colloidal semiconductor nanocrystals (NCs) have been studied for the next-generation electronic and optoelectronic technology due to their size-dependent bandgap tunability and solution processability. Core@shell NCs have attracted significant attention especially due to their exceptional optical characteristic. It benefits in reduced Auger recombination, suppressed blinking, and enhanced carrier multiplication. The influence of the shell on their charge carrier transport has become an important subject of study. In our previous report, we have successfully demonstrated the role of shelling a PbTe NC core with PbS which made them exclusively electron-transporting. The energy level offset in the so-called quasi-type-Ⅱ NC made the hole strongly localized within the NC.1,2 However, important questions on how the core size and shell thickness influence the charge carrier transports of their assembly remain unanswered. In this work, the effect of core size and shell thickness on the charge carrier transport in the core@shell PbTe@PbS colloidal NCs assembly is studied. The assemblies of these core@shell NCs are crosslinked by short organic molecules that replaced the native insulating oleic acid ligand via liquid/air assembly technique. Properties of these assemblies are measured using both conventional solid gate transistor and electric-double-layer transistor. The electronic transport measurement shows an evolution of transport characteristics as a function of shell thickness and core size. We observe the transport characteristic transforms from n-type to ambipolar for a thicker shell. It suggested that the alignment energy-level of core and shell strongly depends on its core and shell sizes. As the result, core@shell PbTe@PbS may form a type Ⅰ, type Ⅱ, and quasi type Ⅱ by simply altering its core and shell sizes. This various type offers by core@shell PbTe@PbS benefits for wide-range electronic applications.
机译:由于其尺寸依赖的带隙可调性和解决方案加工性,已经研究了胶体半导体纳米晶体(NCS)的下一代电子和光电技术。核心@ Shell NCS尤其引起了显着的关注,特别是由于其出色的光学特性。它在降低的螺旋钻重组,抑制闪烁和增强的载波乘法中受益。壳体对其电荷载体运输的影响已成为研究的重要主题。在我们之前的报告中,我们已成功展示了用PBS壳化PBTE NC芯的作用,该PBS专门使其独占电子运输。所谓的准型-ⅡNC中的能量水平偏移使得NC.1,2内强烈定位的孔,但是关于芯尺寸和壳厚度如何影响其组件的电荷载体运输的重要问题保持未答复。在这项工作中,研究了核心尺寸和壳体厚度对核心@ Shell PBTE @ PBS胶体NCS组件中的电荷载波运输的影响。这些核心/壳NCS的组件由短有机分子交联,所述短有机分子通过液/空气组装技术更换天然绝缘油酸配体。使用传统的实体栅极晶体管和电双层晶体管测量这些组件的性质。电子传输测量显示作为壳体厚度和芯尺寸的函数的传输特性的演变。我们观察到从n型转换为厚壳的Ambipolar转换。它建议芯和壳的对准能级强烈取决于其核心和壳体尺寸。结果,通过简单地改变其核心和壳体尺寸,核心@ Shell PBTE @ PBS可以形成Ⅰ型,Ⅱ型和准Ⅱ型。这种类型的类型由核心@ Shell PBTE @ PBS PBS供应广泛电子应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号