首页> 外文学位 >Investigation of the Biochemical Mechanism for Cell-Substrate Mechanical Sensing.
【24h】

Investigation of the Biochemical Mechanism for Cell-Substrate Mechanical Sensing.

机译:细胞基质机械传感的生化机理研究。

获取原文
获取原文并翻译 | 示例

摘要

Advancements in stem cell biology and materials science have enabled the development of new treatments for tissue repair. Dental pulp stem cells (DPSCs), which are highly proliferative and can be induced to differentiate along several mesenchymal cell lineages, offer the possibility for pulpal regeneration and treatment of injured dentition. Polybutadiene (PB) may be used as a substrate for these cells. This elastomer can be spun casted into films of different thicknesses with different moduli. DPSCs grown on PB films, which are relatively hard (less than 1500 A thick), biomineralize depositing crystalline calcium phosphate without a requirement for the typical induction factor, dexamethasone (Dex). The moduli of cells track with the moduli of the surface suggesting that mechanics controls mineralization. The purpose of this study was to determine whether the major effect of Dex on biomineralization is the result of its ability to alter cell mechanics or its ability to induce osteogenesis/odontogenesis. DPSCs sense substrate mechanics through the focal adhesions, whose function is in part regulated by the Ras homolog gene (Rho) and its downstream effectors Rho associated kinases (ROCKs). ROCKs control actin filament polymerization and interactions with myosin light chain. Because cells sense substrate mechanics through focal adhesion proteins whose function is regulated by ROCKs, the impact of a ROCK inhibitor, Y-27632, was monitored. Blocking this pathway with Y-27632 suppressed the ability of DPSCs to sense the PB substrate. The cell modulus, plasma membrane stiffness, and cytosol stiffness were all lowered and biomineralization was suppressed in all cultures independent of substrate modulus or the presence of Dex. In other words, the inability of DPSCs to sense mechanical cues suppressed their ability to promote mineralization. On the other hand the expression of osteogenic/odontogenic markers (alkaline phosphatase and osteocalcin) was enhanced, perhaps due to Y-27632 induced changes in Wnt signaling as seen in other mesenchymal stem cells. How mechanical sensing regulates matrix proteins to promote their mineralization remains an open question.
机译:干细胞生物学和材料科学的进步使得能够开发出用于组织修复的新疗法。牙髓干细胞(DPSC)高度增殖,可被诱导沿多个间充质细胞谱系分化,为牙髓再生和牙列损伤的治疗提供了可能性。聚丁二烯(PB)可用作这些电池的基材。可以将该弹性体纺丝成具有不同模量的不同厚度的膜。在相对坚硬(小于1500 A厚)的PB薄膜上生长的DPSC进行生物矿化,沉积出结晶的磷酸钙,而无需典型的诱导因子地塞米松(Dex)。细胞的模量与表面的模量一致,表明力学控制矿化。这项研究的目的是确定Dex对生物矿化的主要影响是其改变细胞力学的能力还是诱导成骨/成牙能力的结果。 DPSC通过粘着粘附感测基质机制,其功能部分受Ras同源基因(Rho)及其下游效应子Rho相关激酶(ROCKs)调节。 ROCKs控制肌动蛋白丝的聚合以及与肌球蛋白轻链的相互作用。由于细胞通过粘着斑蛋白(其功能受ROCK调节)来感知底物力学,因此监测了ROCK抑制剂Y-27632的影响。用Y-27632阻断该途径抑制了DPSC感测PB底物的能力。与底物模量或Dex的存在无关,所有培养物中的细胞模量,质膜刚度和胞质溶胶刚度均降低,生物矿化受到抑制。换句话说,DPSC无法感知机械提示会抑制其促进矿化的能力。另一方面,成骨/成牙标记物(碱性磷酸酶和骨钙素)的表达增强,可能是由于Y-27632诱导的Wnt信号变化,如在其他间充质干细胞中所见。机械感测如何调节基质蛋白以促进其矿化仍是一个悬而未决的问题。

著录项

  • 作者

    Ricotta, Vincent Anthony.;

  • 作者单位

    State University of New York at Stony Brook.;

  • 授予单位 State University of New York at Stony Brook.;
  • 学科 Engineering Materials Science.;Chemistry Polymer.;Biology Cell.
  • 学位 M.S.
  • 年度 2014
  • 页码 53 p.
  • 总页数 53
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号