首页> 外文学位 >Studies of Phonon Anharmonicity in Solids.
【24h】

Studies of Phonon Anharmonicity in Solids.

机译:固体声子非谐性研究。

获取原文
获取原文并翻译 | 示例

摘要

Today our understanding of the vibrational thermodynamics of materials at low temperatures is emerging nicely, based on the harmonic model in which phonons are independent. At high temperatures, however, this understanding must accommodate how phonons interact with other phonons or with other excitations. We shall see that the phonon-phonon interactions give rise to interesting coupling problems, and essentially modify the equilibrium and non-equilibrium properties of materials, e.g., thermodynamic stability, heat capacity, optical properties and thermal transport of materials. Despite its great importance, to date the anharmonic lattice dynamics is poorly understood and most studies on lattice dynamics still rely on the harmonic or quasiharmonic models. There have been very few studies on the pure phonon anharmonicity and phonon-phonon interactions. The work presented in this thesis is devoted to the development of experimental and computational methods on this subject.;Modern inelastic scattering techniques with neutrons or photons are ideal for sorting out the anharmonic contribution. Analysis of the experimental data can generate vibrational spectra of the materials, i.e., their phonon densities of states or phonon dispersion relations. We obtained high quality data from laser Raman spectrometer, Fourier transform infrared spectrometer and inelastic neutron spectrometer. With accurate phonon spectra data, we obtained the energy shifts and lifetime broadenings of the interacting phonons, and the vibrational entropies of different materials. The understanding of them then relies on the development of the fundamental theories and the computational methods.;We developed an efficient post-processor for analyzing the anharmonic vibrations from the molecular dynamics (MD) calculations. Currently, most first principles methods are not capable of dealing with strong anharmonicity, because the interactions of phonons are ignored at finite temperatures. Our method adopts the Fourier transformed velocity autocorrelation method to handle the big data of time-dependent atomic velocities from MD calculations, and efficiently reconstructs the phonon DOS and phonon dispersion relations. Our calculations can reproduce the phonon frequency shifts and lifetime broadenings very well at various temperatures.;To understand non-harmonic interactions in a microscopic way, we have developed a numerical fitting method to analyze the decay channels of phonon-phonon interactions. Based on the quantum perturbation theory of many-body interactions, this method is used to calculate the three-phonon and four-phonon kinematics subject to the conservation of energy and momentum, taking into account the weight of phonon couplings. We can assess the strengths of phonon-phonon interactions of different channels and anharmonic orders with the calculated two-phonon DOS. This method, with high computational efficiency, is a promising direction to advance our understandings of non-harmonic lattice dynamics and thermal transport properties.;These experimental techniques and theoretical methods have been successfully performed in the study of anharmonic behaviors of metal oxides, including rutile and cuprite stuctures, and will be discussed in detail in Chapters 4 to 6. For example, for rutile titanium dioxide (TiO2), we found that the anomalous anharmonic behavior of the B1g mode can be explained by the volume effects on quasiharmonic force constants, and by the explicit cubic and quartic anharmonicity. For rutile tin dioxide (SnO2), the broadening of the B2 g mode with temperature showed an unusual concave downwards curvature. This curvature was caused by a change with temperature in the number of down-conversion decay channels, originating with the wide band gap in the phonon dispersions. For silver oxide (Ag2O), strong anharmonic effects were found for both phonons and for the negative thermal expansion.
机译:今天,基于声子独立的谐波模型,我们对低温下材料的振动热力学的理解正在很好地形成。但是,在高温下,这种理解必须适应声子如何与其他声子或其他激发相互作用。我们将看到,声子-声子相互作用引起了有趣的耦合问题,并从本质上改变了材料的平衡和非平衡性质,例如材料的热力学稳定性,热容量,光学性质和热传递。尽管非常重要,但迄今为止,对非谐晶格动力学的了解还很少,并且大多数关于晶格动力学的研究仍依赖于谐波或准谐模型。关于纯声子非谐性和声子-声子相互作用的研究很少。本论文的工作致力于该主题的实验和计算方法的发展。现代中子或光子非弹性散射技术是理清非谐贡献的理想选择。分析实验数据可以产生材料的振动光谱,即它们的声子密度或声子色散关系。我们从激光拉曼光谱仪,傅立叶变换红外光谱仪和非弹性中子光谱仪获得了高质量的数据。利用准确的声子光谱数据,我们获得了相互作用声子的能量转移和寿命展宽,以及不同材料的振动熵。然后,对它们的理解取决于基础理论和计算方法的发展。我们开发了一种有效的后处理器,用于从分子动力学(MD)计算中分析非谐振动。当前,大多数第一原理方法不能处理强非谐性,因为声子的相互作用在有限温度下会被忽略。我们的方法采用傅立叶变换速度自相关方法来处理MD计算中随时间变化的原子速度的大数据,并有效地重建声子DOS和声子色散关系。我们的计算可以很好地再现声子在不同温度下的频移和寿命展宽。为了以微观方式理解非谐波相互作用,我们开发了一种数值拟合方法来分析声子-声子相互作用的衰减通道。基于多体相互作用的量子摄动理论,该方法用于计算受能量和动量守恒影响的三声子和四声子运动学,并考虑了声子耦合的权重。我们可以利用计算出的两声子DOS评估不同通道和非谐阶数的声子-声子相互作用的强度。该方法具有较高的计算效率,是加深我们对非调和晶格动力学和热输运性质的理解的有希望的方向。这些实验技术和理论方法已成功地用于研究金属氧化物(包括金红石)的非调和行为。和铜铁矿的结构,将在第4至6章中进行详细讨论。例如,对于金红石型二氧化钛(TiO2),我们发现B1g模的反常谐行为可以用体积对准谐波力常数的影响来解释,以及明显的三次和四次非谐性。对于金红石型二氧化锡(SnO2),B2g模式随温度的展宽显示出异常的凹向下弯曲。该曲率是由于下转换衰减通道的数量随温度的变化而引起的,其源于声子色散的宽带隙。对于氧化银(Ag2O),声子和负热膨胀均具有很强的非谐效应。

著录项

  • 作者

    Lan, Tian.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 188 p.
  • 总页数 188
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号