首页> 外文学位 >Photophysical and Electronic Properties of Low-Bandgap Semiconducting Polymers.
【24h】

Photophysical and Electronic Properties of Low-Bandgap Semiconducting Polymers.

机译:低带隙半导体聚合物的光物理和电子性质。

获取原文
获取原文并翻译 | 示例

摘要

In this Ph.D. work, we investigate the optoelectronic properties of low-bandgap semiconducting polymers and project the potential for employing these materials in electronic and photonics devices, with a particular emphasis on use in organic solar cells.;The bandgap of these semiconducting polymers is determined by the chemical structure, and therefore can be tailored through synthesis if the relevant structure-property relationships are well-understood. The materials studied in this work, a new series of Poly(thienylenevinylene) (PTV) derivatives, posses lower band gaps than conventional polymers through a design that incorporates aromatic-quinoid structural disturbances. This type of chemical structure delocalizes the electronic structure along the polymer backbone and reduces the energy of the lowest excited-state leading to a smaller band-gap. We investigate these materials through a variety of techniques including linear spectroscopy such as absorption and photoluminescence, pump-probe techniques like cw-photoinduced absorption and transient photo-induced absorption, and the non-linear electroasborption technique in order to interrogate the consequences of the delocalized electronic structure and its response to optical stimuli. We additionally consider the effects of environmental factors such as temperature, solvents and chemical doping agents. During the course of these investigations, we consider both of the two primary categorical descriptions of structure-property relationships for polymers within the molecular exciton model, namely the role of inter-molecular interactions on the electronic properties through the variation of supermolecular order and the fundamental determination of electronic structure due to specific intra-molecular interaction along the backbone of the polymer chain. We show that the dilution of aromaticity in semiconducting polymers, while being a viable means of reducing the optical band gap, results in a significant increase in the role of electron-electron interactions in determining the electronic properties. This is observed to be detrimental for device performance as the highly polarizable excited state common to polymers gives way to highly correlated state that extinguishes both the emissive properties and more importantly for solar cells, the charge-generating characteristics. This situation is shown to be predominant regardless of the nature of interchain interactions. We therefore show that the method of obtaining low-bandgap polymers here comes along with costly side-effects that inhibit their efficient application in solar cells.;Further, we directly probe the efficacy of these materials in the common bulk-heterojunction architecture with both spectroscopy and device characterization in order to determine the limiting and beneficial factors. We show that, while from the point of view of absorption of solar radiation these low-bandgap polymers are more suited for solar cells, the ability to convert the absorbed photons into electron-hole pairs and generate electricity is lacking, due to the internal conversion into the highly correlated state and thus, the absorbed photon energy is lost. For completeness, we fabricate devices and verify that both the charge-transport properties and alignment of charge extraction levels with those of the contacts can not be responsible for the dramatic decrease in efficiency found from these devices as compared to other higher band gap polymers. We thus conclusively determine that the lack of power converison efficiency is governed by the inefficiency of charge-generation resulting from the intrinsic defective molecular structures rendering a low-lying optically forbidden state below the lowest optical allowed state that consumes the majority of the photogenerated excitons. (Abstract shortened by UMI.).
机译:在这个博士学位在工作中,我们研究了低带隙半导体聚合物的光电性能,并预测了将这些材料用于电子和光子学器件的潜力,特别着重于在有机太阳能电池中的使用。结构,因此,如果对相关的结构-属性关系有充分的了解,则可以通过综合来定制。在这项工作中研究的材料是一系列新的聚苯乙撑亚乙烯基(PTV)衍生物,通过结合了芳香族醌结构扰动的设计,其带隙比常规聚合物要低。这种类型的化学结构使电子结构沿着聚合物主链发生离域,并降低了最低激发态的能量,从而导致了较小的带隙。我们通过各种技术研究这些材料,包括吸收和光致发光等线性光谱学,连续光诱导吸收和瞬态光诱导吸收等泵浦探针技术以及非线性电吸附技术,以探究离域的后果电子结构及其对光学刺激的反应我们还考虑了环境因素的影响,例如温度,溶剂和化学掺杂剂。在这些研究过程中,我们考虑了分子激子模型中聚合物的结构-性质关系的两个主要分类描述,即分子间相互作用通过改变超分子序和基波对电子性能的作用。由于沿聚合物链主链的特定分子内相互作用而确定电子结构。我们表明,在芳香族化合物中稀释芳香族化合物,虽然是减少光学带隙的可行方法,但会导致电子-电子相互作用在确定电子特性中的作用显着增加。观察到这对于器件性能是有害的,因为聚合物共有的高度可极化的激发态让位于高度相关的态,该态消除了发射性质,更重要的是消除了太阳能电池的电荷产生特性。无论链间相互作用的性质如何,这种情况都被证明是主要的。因此,我们证明了在这里获得低带隙聚合物的方法伴随着昂贵的副作用,这些副作用抑制了它们在太阳能电池中的有效应用。此外,我们直接利用两种光谱技术在常见的体-异质结结构中探索了这些材料的功效。和设备表征,以确定限制因素和有益因素。我们表明,从吸收太阳辐射的角度来看,这些低带隙聚合物更适合于太阳能电池,但由于内部转换,因此缺乏将吸收的光子转换成电子-空穴对并发电的能力进入高度相关的状态,因此吸收的光子能量会丢失。为了完整起见,我们制造了器件,并验证了与其他更高带隙的聚合物相比,电荷传输特性和电荷提取水平与触点的对准均不能导致这些器件的效率急剧下降。因此,我们最终确定功率转换效率的不足是由固有缺陷分子结构导致的低电荷光学禁止态(其消耗了大部分光生激子的最低光学允许态)导致的电荷生成效率低引起的。 (摘要由UMI缩短。)。

著录项

  • 作者

    Lafalce, Evan.;

  • 作者单位

    University of South Florida.;

  • 授予单位 University of South Florida.;
  • 学科 Theoretical physics.;Materials science.;Polymer chemistry.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 187 p.
  • 总页数 187
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号