首页> 外文学位 >Plant genome engineering with sequence-specific nucleases: Methods for editing DNA in whole plants.
【24h】

Plant genome engineering with sequence-specific nucleases: Methods for editing DNA in whole plants.

机译:具有序列特异性核酸酶的植物基因组工程:在整个植物中编辑DNA的方法。

获取原文
获取原文并翻译 | 示例

摘要

The development and function of all living organisms, from bacteria to humans, is encoded within a universal blueprint-deoxyribonucleic acid (DNA). The ability to re-write this code of life promises great benefits, ranging from a better understanding of gene function to correcting genetic diseases. Therefore, there is high value for tools and techniques that enable genome editing in living cells. In the last 20 years, multiple classes of enzymes have been developed that can be 'rewired' to recognize and break a DNA sequence of interest. These enzymes (sequence-specific nucleases) have proven to be powerful reagents for editing DNA in higher-eukaryotic cells. However, the ability to modify DNA, particularly in plant cells, does not solely depend on the activity of the sequence specific nuclease. Instead, it also depends on the efficiency with which the genome engineering reagents are delivered, the cells they are delivered to, and the effectiveness of selecting (or screening) for cells with the desired modification. Studies within this dissertation seek to develop novel methods for delivering genome engineering reagents to whole plants. First, we focused our attention on geminiviruses---a large family of plant DNA viruses. Prior to these studies, geminiviruses were primarily used as vectors for virus-induced gene silencing or for protein expression; however, their circular DNA genomes, and their ability to replicate extrachromosomally, makes them an attractive vector for delivering genome engineering reagents. Here, we describe proof-of-principle experiments showing that, in Nicotiana tabacum, replicons based on the bean yellow dwarf virus can indeed deliver genome engineering reagents to leaf cells, and that these modified cells could grow into calli and seedlings. Interestingly, we also observed an enhancement in homologous recombination in leaf cells, relative to our non-viral controls. This enhancement appeared to be due to replication of donor molecules and by pleiotropic activity of the virus replication proteins. In addition to DNA viruses, we also explored the use of RNA viruses for the delivery of sequence-specific nucleases in Arabidopsis. And, finally, we expanded the utility of stable integration into plant genomes by applying this approach to additional plants, additional target genes, and additional genome modifications.
机译:从细菌到人类,所有活生物体的发育和功能都在通用蓝图-脱氧核糖核酸(DNA)中编码。重写这种生活准则的能力有望带来巨大的好处,从更好地了解基因功能到纠正遗传疾病。因此,在活细胞中进行基因组编辑的工具和技术具有很高的价值。在最近的20年中,已经开发出多种类型的酶,可以“重新连接”以识别和破坏目标DNA序列。这些酶(序列特异性核酸酶)已被证明是编辑高级真核细胞中DNA的强大试剂。然而,修饰DNA的能力,特别是在植物细胞中,并不仅仅取决于序列特异性核酸酶的活性。相反,这还取决于基因组工程试剂的递送效率,它们被递送至的细胞以及选择(或筛选)具有所需修饰的细胞的有效性。本论文的研究寻求开发将基因组工程试剂传递给整个植物的新颖方法。首先,我们将注意力集中在双子病毒上-一种大的植物DNA病毒家族。在进行这些研究之前,双生病毒主要用作病毒诱导的基因沉默或蛋白质表达的载体。但是,它们的环状DNA基因组及其在染色体外复制的能力使它们成为传递基因组工程试剂的有吸引力的载体。在这里,我们描述了原理验证实验,表明在烟草中,基于豆黄矮病毒的复制子确实可以将基因组工程试剂传递给叶细胞,并且这些修饰的细胞可以长成愈伤组织和幼苗。有趣的是,相对于我们的非病毒对照,我们还观察到了叶细胞中同源重组的增强。这种增强似乎是由于供体分子的复制和病毒复制蛋白的多效性。除DNA病毒外,我们还探索了RNA病毒在拟南芥中传递序列特异性核酸酶的用途。最后,通过将这种方法应用于其他植物,其他靶基因和其他基因组修饰,我们将稳定整合的功能扩展到了植物基因组中。

著录项

  • 作者

    Baltes, Nicholas J.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Molecular biology.;Virology.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 190 p.
  • 总页数 190
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号